Rigidity of branching microstructures in shape memory alloys


Abstract in English

We analyze generic sequences for which the geometrically linear energy [E_eta(u,chi):= eta^{-frac{2}{3}}int_{B_{0}(1)} left| e(u)- sum_{i=1}^3 chi_ie_iright|^2 d x+eta^frac{1}{3} sum_{i=1}^3 |Dchi_i|(B_{0}(1))] remains bounded in the limit $eta to 0$. Here $ e(u) :=1/2(Du + Du^T)$ is the (linearized) strain of the displacement $u$, the strains $e_i$ correspond to the martensite strains of a shape memory alloy undergoing cubic-to-tetragonal transformations and $chi_i:B_{0}(1) to {0,1}$ is the partition into phases. In this regime it is known that in addition to simple laminates also branched structures are possible, which if austenite was present would enable the alloy to form habit planes. In an ansatz-free manner we prove that the alignment of macroscopic interfaces between martensite twins is as predicted by well-known rank-one conditions. Our proof proceeds via the non-convex, non-discrete-valued differential inclusion [e(u) in bigcup_{1leq i eq jleq 3} operatorname{conv} {e_i,e_j}] satisfied by the weak limits of bounded energy sequences and of which we classify all solutions. In particular, there exist no convex integration solutions of the inclusion with complicated geometric structures.

Download