Do you want to publish a course? Click here

Socially Trusted Collaborative Edge Computing in Ultra Dense Networks

256   0   0.0 ( 0 )
 Added by Lixing Chen
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.



rate research

Read More

119 - Lixing Chen , Jie Xu 2017
Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the proximity of data sources, thereby reducing service provision latency and saving backhaul network bandwidth. Although computation offloading has been extensively studied in the literature, service caching is an equally, if not more, important design topic of MEC, yet receives much less attention. Service caching refers to caching application services and their related data (libraries/databases) in the edge server, e.g. MEC-enabled Base Station (BS), enabling corresponding computation tasks to be executed. Since only a small number of services can be cached in resource-limited edge server at the same time, which services to cache has to be judiciously decided to maximize the system performance. In this paper, we investigate collaborative service caching in MEC-enabled dense small cell (SC) networks. We propose an efficient decentralized algorithm, called CSC (Collaborative Service Caching), where a network of small cell BSs optimize service caching collaboratively to address a number of key challenges in MEC systems, including service heterogeneity, spatial demand coupling, and decentralized coordination. Our algorithm is developed based on parallel Gibbs sampling by exploiting the special structure of the considered problem using graphing coloring. The algorithm significantly improves the time efficiency compared to conventional Gibbs sampling, yet guarantees provable convergence and optimality. CSC is further extended to the SC network with selfish BSs, where a coalitional game is formulated to incentivize collaboration. A coalition formation algorithm is developed by employing the merge-and-split rules and ensures the stability of the SC coalitions.
139 - Lixing Chen , Sheng Zhou , Jie Xu 2017
The (ultra-)dense deployment of small-cell base stations (SBSs) endowed with cloud-like computing functionalities paves the way for pervasive mobile edge computing (MEC), enabling ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. To handle spatially uneven computation workloads in the network, cooperation among SBSs via workload peer offloading is essential to avoid large computation latency at overloaded SBSs and provide high quality of service to end users. However, performing effective peer offloading faces many unique challenges in small cell networks due to limited energy resources committed by self-interested SBS owners, uncertainties in the system dynamics and co-provisioning of radio access and computing services. This paper develops a novel online SBS peer offloading framework, called OPEN, by leveraging the Lyapunov technique, in order to maximize the long-term system performance while keeping the energy consumption of SBSs below individual long-term constraints. OPEN works online without requiring information about future system dynamics, yet provides provably near-optimal performance compared to the oracle solution that has the complete future information. In addition, this paper formulates a novel peer offloading game among SBSs, analyzes its equilibrium and efficiency loss in terms of the price of anarchy in order to thoroughly understand SBSs strategic behaviors, thereby enabling decentralized and autonomous peer offloading decision making. Extensive simulations are carried out and show that peer offloading among SBSs dramatically improves the edge computing performance.
Edge computing as a promising technology provides lower latency, more efficient transmission, and faster speed of data processing since the edge servers are closer to the user devices. Each edge server with limited resources can offload latency-sensitive and computation-intensive tasks from nearby user devices. However, edge computing faces challenges such as resource allocation, energy consumption, security and privacy issues, etc. Auction mechanisms can well characterize bidirectional interactions between edge servers and user devices under the above constraints in edge computing. As demonstrated by the existing works, auction and mechanism design approaches are outstanding on achieving optimal allocation strategy while guaranteeing mutual satisfaction among edge servers and user devices, especially for scenarios with scarce resources. In this paper, we introduce a comprehensive survey of recent researches that apply auction approaches in edge computing. Firstly, a brief overview of edge computing including three common edge computing paradigms, i.e., cloudlet, fog computing and mobile edge computing, is presented. Then, we introduce fundamentals and backgrounds of auction schemes commonly used in edge computing systems. After then, a comprehensive survey of applications of auction-based approaches applied for edge computing is provided, which is categorized by different auction approaches. Finally, several open challenges and promising research directions are discussed.
142 - Mushu Li , Jie Gao , Lian Zhao 2020
Mobile edge computing (MEC) is a promising technology to support mission-critical vehicular applications, such as intelligent path planning and safety applications. In this paper, a collaborative edge computing framework is developed to reduce the computing service latency and improve service reliability for vehicular networks. First, a task partition and scheduling algorithm (TPSA) is proposed to decide the workload allocation and schedule the execution order of the tasks offloaded to the edge servers given a computation offloading strategy. Second, an artificial intelligence (AI) based collaborative computing approach is developed to determine the task offloading, computing, and result delivery policy for vehicles. Specifically, the offloading and computing problem is formulated as a Markov decision process. A deep reinforcement learning technique, i.e., deep deterministic policy gradient, is adopted to find the optimal solution in a complex urban transportation network. By our approach, the service cost, which includes computing service latency and service failure penalty, can be minimized via the optimal workload assignment and server selection in collaborative computing. Simulation results show that the proposed AI-based collaborative computing approach can adapt to a highly dynamic environment with outstanding performance.
Mobile Edge Computing (MEC) is an emerging paradigm that provides computing, storage, and networking resources within the edge of the mobile Radio Access Network (RAN). MEC servers are deployed on generic computing platform within the RAN and allow for delay-sensitive and context-aware applications to be executed in close proximity to the end users. This approach alleviates the backhaul and core network and is crucial for enabling low-latency, high-bandwidth, and agile mobile services. This article envisages a real-time, context-aware collaboration framework that lies at the edge of the RAN, constituted of MEC servers and mobile devices, and that amalgamates the heterogeneous resources at the edge. Specifically, we introduce and study three strong use cases ranging from mobile-edge orchestration, collaborative caching and processing and multi-layer interference cancellation. We demonstrate the promising benefits of these approaches in facilitating the evolution to 5G networks. Finally, we discuss the key technical challenges and open-research issues that need to be addressed in order to make an efficient integration of MEC into 5G ecosystem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا