No Arabic abstract
The formation of deuterated molecules is favoured at low temperatures and high densities. Therefore, the deuteration fraction D$_{frac}$ is expected to be enhanced in cold, dense prestellar cores and to decrease after protostellar birth. Previous studies have shown that the deuterated forms of species such as N2H+ (formed in the gas phase) and CH3OH (formed on grain surfaces) can be used as evolutionary indicators and to constrain their dominant formation processes and time-scales. Formaldehyde (H2CO) and its deuterated forms can be produced both in the gas phase and on grain surfaces. However, the relative importance of these two chemical pathways is unclear. Comparison of the deuteration fraction of H2CO with respect to that of N2H+, NH3 and CH3OH can help us to understand its formation processes and time-scales. With the new SEPIA Band 5 receiver on APEX, we have observed the J=3-2 rotational lines of HDCO and D2CO at 193 GHz and 175 GHz toward three massive star forming regions hosting objects at different evolutionary stages: two High-mass Starless Cores (HMSC), two High-mass Protostellar Objects (HMPOs), and one Ultracompact HII region (UCHII). By using previously obtained H2CO J=3-2 data, the deuteration fractions HDCO/H2CO and D2CO/HDCO are estimated. Our observations show that singly-deuterated H2CO is detected toward all sources and that the deuteration fraction of H2CO increases from the HMSC to the HMPO phase and then sharply decreases in the latest evolutionary stage (UCHII). The doubly-deuterated form of H2CO is detected only in the earlier evolutionary stages with D2CO/H2CO showing a pattern that is qualitatively consistent with that of HDCO/H2CO, within current uncertainties. Our initial results show that H2CO may display a similar D$_{frac}$ pattern as that of CH3OH in massive young stellar objects. This finding suggests that solid state reactions dominate its formation.
Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth. In this paper we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer. Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the $J$=3$rightarrow$2 rotational lines of HDCO and D$_2$CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H$_2$CO emission and to give an estimate of the deuteration fractions HDCO/H$_2$CO and D$_2$CO/HDCO at scales of $sim$6 (0.04-0.15 pc at the distance of our targets). Our observations show that singly- and doubly deuterated H$_2$CO are detected toward high-mass protostellar objects (HMPOs) and ultracompact HII regions (UCHII regions), the deuteration fraction of H$_2$CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UCHII), from $sim$0.13 to $sim$0.01. We have not detected HDCO and D$_2$CO emission from the youngest sources (high-mass starless cores, HMSCs). Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.
We present results of a multi-epoch monitoring program on variability of 6$,$cm formaldehyde (H$_2$CO) masers in the massive star forming region NGC$,$7538$,$IRS$,$1 from 2008 to 2015 conducted with the GBT, WSRT, and VLA. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC$,$7538$,$IRS$,$1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2$,$GHz methanol and 22.2$,$GHz water masers toward NGC$,$7538$,$IRS$,$1. The brightest maser components of CH$_3$OH and H$_2$O species show a decrease in flux density as a function of time. The brightest H$_2$CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H$_2$O and 12.2$,$GHz CH$_3$OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97$,$GHz CH$_3$OH transitions in NGC$,$7538$,$IRS$,$1 are also reported. In addition, we observed five other 6$,$cm formaldehyde maser regions. We found no evidence of significant variability of the 6$,$cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96$-$0.02. All six sources were also observed in the H$_2^{13}$CO isotopologue transition of the 6$,$cm H$_2$CO line; H$_2^{13}$CO absorption was detected in five of the sources. Estimated column density ratios [H$_2^{12}$CO]/[H$_2^{13}$CO] are reported.
(Abridged) We present a large sample of o-H$_2$D$^+$ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages. APEX observations of the ground-state transition of o-H$_2$D$^+$ were analysed in a sample of massive clumps selected from ATLASGAL at different evolutionary stages. Column densities and beam-averaged abundances of o-H$_2$D$^+$ with respect to H$_2$, $X$(o-H$_2$D$^+$), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. We detect 16 sources in o-H$_2$D$^+$ and find clear correlations between $X$(o-H$_2$D$^+$) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H$_3^+$ are more abundant in the early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the $X$(o-H$_2$D$^+$) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H$^{13}$CO$^+$, DCO$^+$, and C$^{17}$O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Our study presents the largest sample of o-H$_2$D$^+$ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H$_2$D$^+$ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified, of which 20 are newly discovered. Many of the HII regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated towards the millimeter clumps; of the 31 millimeter clumps observed, 9 of these appear to be physically related to ionized gas, and a further 6 have ionized gas emission within 1. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7 +/- 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars.
Context: In cold and dense gas prior to the formation of young stellar objects, heavy molecular species (including CO) are accreted onto dust grains. Under these conditions H$_3^+$ and its deuterated isotopologues become more abundant, enhancing the deuterium fraction of molecules such as N$_2$H$^+$ that are formed via ion-neutral reactions. Because this process is extremely temperature sensitive, the abundance of these species is likely linked to the evolutionary stage of the source. Aims: We investigate how the abundances of o-H$_2$D$^+$ and N$_2$D$^+$ vary with evolution in high-mass clumps. Methods: We observed with APEX the ground-state transitions of o-H$_2$D$^+$ near 372 GHz, and N$_2$D$^+$(3-2) near 231 GHz for three massive clumps in different evolutionary stages. The sources were selected within the G351.77-0.51 complex to minimise the variation of initial chemical conditions, and to remove distance effects. We modelled their dust continuum emission to estimate their physical properties, and also modelled their spectra under the assumption of local thermodynamic equilibrium to calculate beam-averaged abundances. Results: We find an anticorrelation between the abundance of o-H$_2$D$^+$ and that of N$_2$D$^+$, with the former decreasing and the latter increasing with evolution. With the new observations we are also able to provide a qualitative upper limit to the age of the youngest clump of about 10$^5$ yr, comparable to its current free-fall time. Conclusions: We can explain the evolution of the two tracers with simple considerations on the chemical formation paths, depletion of heavy elements, and evaporation from the grains. We therefore propose that the joint observation and the relative abundance of o-H$_2$D$^+$ and N$_2$D$^+$ can act as an efficient tracer of the evolutionary stages of the star-formation process.