Expected seismicity and the seismic noise environment of Europa


Abstract in English

Seismic data will be a vital geophysical constraint on internal structure of Europa if we land instruments on the surface. Quantifying expected seismic activity on Europa both in terms of large, recognizable signals and ambient background noise is important for understanding dynamics of the moon, as well as interpretation of potential future data. Seismic energy sources will likely include cracking in the ice shell and turbulent motion in the oceans. We define a range of models of seismic activity in Europas ice shell by assuming each model follows a Gutenberg-Richter relationship with varying parameters. A range of cumulative seismic moment release between $10^{16}$ and $10^{18}$ Nm/yr is defined by scaling tidal dissipation energy to tectonic events on the Earths moon. Random catalogs are generated and used to create synthetic continuous noise records through numerical wave propagation in thermodynamically self-consistent models of the interior structure of Europa. Spectral characteristics of the noise are calculated by determining probabilistic power spectral densities of the synthetic records. While the range of seismicity models predicts noise levels that vary by 80 dB, we show that most noise estimates are below the self-noise floor of high-frequency geophones, but may be recorded by more sensitive instruments. The largest expected signals exceed background noise by $sim$50 dB. Noise records may allow for constraints on interior structure through autocorrelation. Models of seismic noise generated by pressure variations at the base of the ice shell due to turbulent motions in the subsurface ocean may also generate observable seismic noise.

Download