Do you want to publish a course? Click here

Compressive Estimation of a Stochastic Process with Unknown Autocorrelation Function

154   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we study the prediction of a circularly symmetric zero-mean stationary Gaussian process from a window of observations consisting of finitely many samples. This is a prevalent problem in a wide range of applications in communication theory and signal processing. Due to stationarity, when the autocorrelation function or equivalently the power spectral density (PSD) of the process is available, the Minimum Mean Squared Error (MMSE) predictor is readily obtained. In particular, it is given by a linear operator that depends on autocorrelation of the process as well as the noise power in the observed samples. The prediction becomes, however, quite challenging when the PSD of the process is unknown. In this paper, we propose a blind predictor that does not require the a priori knowledge of the PSD of the process and compare its performance with that of an MMSE predictor that has a full knowledge of the PSD. To design such a blind predictor, we use the random spectral representation of a stationary Gaussian process. We apply the well-known atomic-norm minimization technique to the observed samples to obtain a discrete quantization of the underlying random spectrum, which we use to predict the process. Our simulation results show that this estimator has a good performance comparable with that of the MMSE estimator.



rate research

Read More

58 - Gerhard Kramer 2017
Optical fiber signals with high power exhibit spectral broadening that seems to limit capacity. To study spectral broadening, the autocorrelation function of the output signal given the input signal is derived for a simplified fiber model that has zero dispersion, distributed optical amplification (OA), and idealized spatial noise processes. The autocorrelation function is used to upper bound the output power of bandlimited or time-resolution limited receivers, and thereby to bound spectral broadening and the capacity of receivers with thermal noise. The output power scales at most as the square-root of the launch power, and thus capacity scales at most as one-half the logarithm of the launch power. The propagating signal bandwidth scales at least as the square-root of the launch power. However, in practice the OA bandwidth should exceed the signal bandwidth to compensate attenuation. Hence, there is a launch power threshold beyond which the fiber model loses practical relevance. Nevertheless, for the mathematical model an upper bound on capacity is developed when the OA bandwidth scales as the square-root of the launch power, in which case capacity scales at most as the inverse fourth root of the launch power.
This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the antenna array, i.e., the antenna array can be grouped into several clusters according to the sparse supports of channels. The SCS property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. Using the SCS of channels, one expects better performance, but the number of clusters and the elements for each cluster are always unknown in the receiver. In this paper, {the Dirichlet process} is exploited to model such sparse channels where those in each cluster have SCS. We proposed a low complexity message passing based sparse Bayesian learning to perform channel estimation in massive MIMO systems by using combined BP with MF on a factor graph. Simulation results demonstrate that the proposed massive MIMO sparse channel estimation outperforms the state-of-the-art algorithms. Especially, it even shows better performance than the variational Bayesian method applied for massive MIMO channel estimation.
We describe a method of constructing a sequence of phase coded waveforms with perfect autocorrelation in the presence of Doppler shift. The constituent waveforms are Golay complementary pairs which have perfect autocorrelation at zero Doppler but are sensitive to nonzero Doppler shifts. We extend this construction to multiple dimensions, in particular to radar polarimetry, where the two dimensions are realized by orthogonal polarizations. Here we determine a sequence of two-by-two Alamouti matrices where the entries involve Golay pairs and for which the sum of the matrix-valued ambiguity functions vanish at small Doppler shifts. The Prouhet-Thue-Morse sequence plays a key role in the construction of Doppler resilient sequences of Golay pairs.
In this paper, we consider the problem of compressive sensing (CS) recovery with a prior support and the prior support quality information available. Different from classical works which exploit prior support blindly, we shall propose novel CS recovery algorithms to exploit the prior support adaptively based on the quality information. We analyze the distortion bound of the recovered signal from the proposed algorithm and we show that a better quality prior support can lead to better CS recovery performance. We also show that the proposed algorithm would converge in $mathcal{O}left(logmbox{SNR}right)$ steps. To tolerate possible model mismatch, we further propose some robustness designs to combat incorrect prior support quality information. Finally, we apply the proposed framework to sparse channel estimation in massive MIMO systems with temporal correlation to further reduce the required pilot training overhead.
This paper presents a novel power spectral density estimation technique for band-limited, wide-sense stationary signals from sub-Nyquist sampled data. The technique employs multi-coset sampling and incorporates the advantages of compressed sensing (CS) when the power spectrum is sparse, but applies to sparse and nonsparse power spectra alike. The estimates are consistent piecewise constant approximations whose resolutions (width of the piecewise constant segments) are controlled by the periodicity of the multi-coset sampling. We show that compressive estimates exhibit better tradeoffs among the estimators resolution, system complexity, and average sampling rate compared to their noncompressive counterparts. For suitable sampling patterns, noncompressive estimates are obtained as least squares solutions. Because of the non-negativity of power spectra, compressive estimates can be computed by seeking non-negative least squares solutions (provided appropriate sampling patterns exist) instead of using standard CS recovery algorithms. This flexibility suggests a reduction in computational overhead for systems estimating both sparse and nonsparse power spectra because one algorithm can be used to compute both compressive and noncompressive estimates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا