Simple Witt modules that are finitely generated over the cartan subalgebra


Abstract in English

Let $dge1$ be an integer, $W_d$ and $mathcal{K}_d$ be the Witt algebra and the weyl algebra over the Laurent polynomial algebra $A_d=mathbb{C} [x_1^{pm1}, x_2^{pm1}, ..., x_d^{pm1}]$, respectively. For any $mathfrak{gl}_d$-module $M$ and any admissible module $P$ over the extended Witt algebra $widetilde W_d$, we define a $W_d$-module structure on the tensor product $Potimes M$. We prove in this paper that any simple $W_d$-module that is finitely generated over the cartan subalgebra is a quotient module of the $W_d$-module $P otimes M$ for a finite dimensional simple $mathfrak{gl}_d$-module $M$ and a simple $mathcal{K}_d$-module $P$ that are finitely generated over the cartan subalgebra. We also characterize all simple $mathcal{K}_d$-modules and all simple admissible $widetilde W_d$-modules that are finitely generated over the cartan subalgebra.

Download