Do you want to publish a course? Click here

WikiM: Metapaths based Wikification of Scientific Abstracts

49   0   0.0 ( 0 )
 Added by Abhik Jana
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In order to disseminate the exponential extent of knowledge being produced in the form of scientific publications, it would be best to design mechanisms that connect it with already existing rich repository of concepts -- the Wikipedia. Not only does it make scientific reading simple and easy (by connecting the involved concepts used in the scientific articles to their Wikipedia explanations) but also improves the overall quality of the article. In this paper, we present a novel metapath based method, WikiM, to efficiently wikify scientific abstracts -- a topic that has been rarely investigated in the literature. One of the prime motivations for this work comes from the observation that, wikified abstracts of scientific documents help a reader to decide better, in comparison to the plain abstracts, whether (s)he would be interested to read the full article. We perform mention extraction mostly through traditional tf-idf measures coupled with a set of smart filters. The entity linking heavily leverages on the rich citation and author publication networks. Our observation is that various metapaths defined over these networks can significantly enhance the overall performance of the system. For mention extraction and entity linking, we outperform most of the competing state-of-the-art techniques by a large margin arriving at precision values of 72.42% and 73.8% respectively over a dataset from the ACL Anthology Network. In order to establish the robustness of our scheme, we wikify three other datasets and get precision values of 63.41%-94.03% and 67.67%-73.29% respectively for the mention extraction and the entity linking phase.



rate research

Read More

Creativity is one of the driving forces of human kind as it allows to break current understanding to envision new ideas, which may revolutionize entire fields of knowledge. Scientific research offers a challenging environment where to learn a model for the creative process. In fact, scientific research is a creative act in the formal settings of the scientific method and this creative act is described in articles. In this paper, we dare to introduce the novel, scientifically and philosophically challenging task of Generating Abstracts of Scientific Papers from abstracts of cited papers (GASP) as a text-to-text task to investigate scientific creativity, To foster research in this novel, challenging task, we prepared a dataset by using services where that solve the problem of copyright and, hence, the dataset is public available with its standard split. Finally, we experimented with two vanilla summarization systems to start the analysis of the complexity of the GASP task.
Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an authors manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application (https://SciEditorDemo2020.herokuapp.com/) and a short video tutorial (https://youtu.be/pkdVU60IcRc) are available online.
Researchers and scientists increasingly find themselves in the position of having to quickly understand large amounts of technical material. Our goal is to effectively serve this need by using bibliometric text mining and summarization techniques to generate summaries of scientific literature. We show how we can use citations to produce automatically generated, readily consumable, technical extractive summaries. We first propose C-LexRank, a model for summarizing single scientific articles based on citations, which employs community detection and extracts salient information-rich sentences. Next, we further extend our experiments to summarize a set of papers, which cover the same scientific topic. We generate extractive summaries of a set of Question Answering (QA) and Dependency Parsing (DP) papers, their abstracts, and their citation sentences and show that citations have unique information amenable to creating a summary.
We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (IAS), discovery of protein pairs (IPS) and text passages characterizing protein interaction (ISS) in full text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam-detection techniques, as well as an uncertainty-based integration scheme. We also used a Support Vector Machine and the Singular Value Decomposition on the same features for comparison purposes. Our approach to the full text subtasks (protein pair and passage identification) includes a feature expansion method based on word-proximity networks. Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of the measures of performance used in the challenge evaluation (accuracy, F-score and AUC). We also report on a web-tool we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. Our approach to abstract classification shows that a simple linear model, using relatively few features, is capable of generalizing and uncovering the conceptual nature of protein-protein interaction from the bibliome. Since the novel approach is based on a very lightweight linear model, it can be easily ported and applied to similar problems. In full text problems, the expansion of word features with word-proximity networks is shown to be useful, though the need for some improvements is discussed.
Globally, recommendation services have become important due to the fact that they support e-commerce applications and different research communities. Recommender systems have a large number of applications in many fields including economic, education, and scientific research. Different empirical studies have shown that recommender systems are more effective and reliable than keyword-based search engines for extracting useful knowledge from massive amounts of data. The problem of recommending similar scientific articles in scientific community is called scientific paper recommendation. Scientific paper recommendation aims to recommend new articles or classical articles that match researchers interests. It has become an attractive area of study since the number of scholarly papers increases exponentially. In this survey, we first introduce the importance and advantages of paper recommender systems. Second, we review the recommendation algorithms and methods, such as Content-Based methods, Collaborative Filtering methods, Graph-Based methods and Hybrid methods. Then, we introduce the evaluation methods of different recommender systems. Finally, we summarize open issues in the paper recommender systems, including cold start, sparsity, scalability, privacy, serendipity and unified scholarly data standards. The purpose of this survey is to provide comprehensive reviews on scholarly paper recommendation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا