Do you want to publish a course? Click here

Integral field spectroscopy of nearby QSOs II. The molecular gas content and condition for star formation

78   0   0.0 ( 0 )
 Added by Bernd Husemann
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present single-dish CO(1-0) and CO(2-1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. CO(1-0) is detected in 8 of 14 targets and CO(2-1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times well matching normal star forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in CO(1-0) which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs however imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for nuclear activity which is well represented by a scaling relation between the total and circum-nuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blow out of the gas envelope through outflows, or a different ISM phase composition.



rate research

Read More

520 - B. Husemann 2014
[abridged] We present optical integral field spectroscopy for a flux-limited sample of 19 QSOs at z<0.2 and spatially resolve their ionized gas properties at a physical resolution of 2-5kpc. The extended narrow line regions (ENLRs), photoionized by the radiation of AGN, have sizes of up to several kpc and correlate more strongly with the QSO continuum luminosity than with the integrated [OIII] luminosity. We find a relation of the form log(r)~(0.46+-0.04)log(L_5100), reinforcing the picture of an approximately constant ionization parameter for the ionized clouds across the ENLR. Besides the ENLR, we also find gas ionized by young massive stars in more than 50 per cent of the galaxies on kpc scales. In more than half of the sample, the specific star formation rates based on the extinction-corrected Ha luminosity are consistent with those of inactive disc-dominated galaxies, even for some bulge-dominated QSO hosts. Enhanced SFRs of up to 70Msun/yr are rare and always associated with signatures of major mergers. Comparison with the SFR based on the 60+100micron FIR luminosity suggests that the FIR luminosity is systematically contaminated by AGN emission and Ha appears to be a more robust and sensitive tracer for the star formation rate. Evidence for efficient AGN feedback is scarce in our sample, but some of our QSO hosts lack signatures of ongoing star formation leading to a reduced specific SFR with respect to the main sequence of galaxies. Based on 12 QSOs where we can make measurements, we find that on average bulge-dominated QSO host galaxies tend to fall below the mass-metallicity relation compared to their disc-dominated counterparts. While not yet statistically significant for our small sample, this may provide a useful diagnostic for future large surveys if this metal dilution can be shown to be linked to recent or ongoing galaxy interactions.
264 - X. Mazzalay 2013
We present an analysis of the H2 emission-line gas kinematics in the inner < 4 arcsec radius of six nearby spiral galaxies, based on AO-assisted integral-field observations obtained in the K-band with SINFONI/VLT. Four of the six galaxies in our sample display ordered H2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC3351); (2) oval motion in the galaxy plane (NGC3627 and NGC4536); (3) streaming motion superimposed on circular rotation (NGC4501); and (4) disordered streaming motions (NGC4569 and NGC4579). The H2 velocity dispersion in the galaxies is usually higher than 50 km/s in the inner 1-2 arcsec radii. The four galaxies with ordered kinematics have v/sigma < 1 at radii less than 40-80 pc. The radius at which v/sigma = 1 is independent of the type of nuclear activity. While the low values of v/sigma could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC3351 and NGC4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics.
Integral-field spectroscopy in the near-infrared (NIR) is a powerful tool to analyze the gaseous and stellar distributions and kinematics, as well as the excitation mechanisms in the centers of galaxies. The unique combination of NIR and sub-mm data at comparable high angular resolution, which has just been possible with SINFONI and ALMA, allows to trace warm and cold gas reservoirs. Only the NIR gives an unobscured view to the center and allows to study the conditions and impact of star formation in the centers of galaxies in a spatially resolved way. Here, we present recent studies of nearby Seyferts and low-luminosity QSOs performed by our group.
We present and analyse integral-field observations of six type-II QSOs with z=0.3-0.4, selected from the Sloan Digital Sky Survey (SDSS). Two of our sample are found to be surrounded by a nebula of warm ionized gas, with the largest nebula extending across 8 (40 kpc). Some regions of the extended nebulae show kinematics that are consistent with gravitational motion, while other regions show relatively perturbed kinematics: velocity shifts and line widths too large to be readily explained by gravitational motion. We propose that a ~20 kpc x20 kpc outflow is present in one of the galaxies. Possible mechanisms for triggering the outflow are discussed. In this object, we also find evidence for ionization both by shocks and the radiation field of the AGN.
We identify stellar structures in the PHANGS sample of 74 nearby galaxies and construct morphological masks of sub-galactic environments based on Spitzer 3.6 micron images. At the simplest level, we distinguish centres, bars, spiral arms, interarm and discs without strong spirals. Slightly more sophisticated masks include rings and lenses, publicly released but not explicitly used in this paper. We examine trends using PHANGS-ALMA CO(2-1) intensity maps and tracers of star formation. The interarm regions and discs without strong spirals dominate in area, whereas molecular gas and star formation are quite evenly distributed among the five basic environments. We reproduce the molecular Kennicutt-Schmidt relation with a slope compatible with unity within the uncertainties, without significant slope differences among environments. In contrast to early studies, we find that bars are not always deserts devoid of gas and star formation, but instead they show large diversity. Similarly, spiral arms do not account for most of the gas and star formation in disc galaxies, and they do not have shorter depletion times than the interarm regions. Spiral arms accumulate gas and star formation, without systematically boosting the star formation efficiency. Centres harbour remarkably high surface densities and on average shorter depletion times than other environments. Centres of barred galaxies show higher surface densities and wider distributions compared to the outer disc; yet, depletion times are similar to unbarred galaxies, suggesting highly intermittent periods of star formation when bars episodically drive gas inflow, without enhancing the central star formation efficiency permanently. In conclusion, we provide quantitative evidence that stellar structures in galaxies strongly affect the organisation of molecular gas and star formation, but their impact on star formation efficiency is more subtle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا