Do you want to publish a course? Click here

Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences

132   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Analyzing and reasoning about safety properties of software systems becomes an especially challenging task for programs with complex flow and, in particular, with loops or recursion. For such programs one needs additional information, for example in the form of loop invariants, expressing properties to hold at intermediate program points. In this paper we study program loops with non-trivial arithmetic, implementing addition and multiplication among numeric program variables. We present a new approach for automatically generating all polynomial invariants of a class of such programs. Our approach turns programs into linear ordinary recurrence equations and computes closed form solutions of these equations. These closed forms express the most precise inductive property, and hence invariant. We apply Grobner basis computation to obtain a basis of the polynomial invariant ideal, yielding thus a finite representation of all polynomial invariants. Our work significantly extends the class of so-called P-solvable loops by handling multiplication with the loop counter variable. We implemented our method in the Mathematica package Aligator and showcase the practical use of our approach.



rate research

Read More

We describe the Aligator.jl software package for automatically generating all polynomial invariants of the rich class of extended P-solvable loops with nested conditionals. Aligator.jl is written in the programming language Julia and is open-source. Aligator.jl transforms program loops into a system of algebraic recurrences and implements techniques from symbolic computation to solve recurrences, derive closed form solutions of loop variables and infer the ideal of polynomial invariants by variable elimination based on Grobner basis computation.
We give two efficient methods to derive Pfaffian systems for A-hypergeometric systems for the application to the holonomic gradient method for statistics. We utilize the Hilbert driven Buchberger algorithm and Macaulay type matrices in the two methods.
Polynomial remainder sequences contain the intermediate results of the Euclidean algorithm when applied to (non-)commutative polynomials. The running time of the algorithm is dependent on the size of the coefficients of the remainders. Different ways have been studied to make these as small as possible. The subresultant sequence of two polynomials is a polynomial remainder sequence in which the size of the coefficients is optimal in the generic case, but when taking the input from applications, the coefficients are often larger than necessary. We generalize two improvements of the subresultant sequence to Ore polynomials and derive a new bound for the minimal coefficient size. Our approach also yields a new proof for the results in the commutative case, providing a new point of view on the origin of the extraneous factors of the coefficients.
We present a new algorithm for determining the satisfiability of conjunctions of non-linear polynomial constraints over the reals, which can be used as a theory solver for satisfiability modulo theory (SMT) solving for non-linear real arithmetic. The algorithm is a variant of Cylindrical Algebraic Decomposition (CAD) adapted for satisfiability, where solution candidates (sample points) are constructed incrementally, either until a satisfying sample is found or sufficient samples have been sampled to conclude unsatisfiability. The choice of samples is guided by the input constraints and previous conflicts. The key idea behind our new approach is to start with a partial sample; demonstrate that it cannot be extended to a full sample; and from the reasons for that rule out a larger space around the partial sample, which build up incrementally into a cylindrical algebraic covering of the space. There are similarities with the incremental variant of CAD, the NLSAT method of Jovanovic and de Moura, and the NuCAD algorithm of Brown; but we present worked examples and experimental results on a preliminary implementation to demonstrate the differences to these, and the benefits of the new approach.
Mahler equations relate evaluations of the same function $f$ at iterated $b$th powers of the variable. They arise in particular in the study of automatic sequences and in the complexity analysis of divide-and-conquer algorithms. Recently, the problem of solving Mahler equations in closed form has occurred in connection with number-theoretic questions. A difficulty in the manipulation of Mahler equations is the exponential blow-up of degrees when applying a Mahler operator to a polynomial. In this work, we present algorithms for solving linear Mahler equations for series, polynomials, and rational functions, and get polynomial-time complexity under a mild assumption. Incidentally, we develop an algorithm for computing the gcrd of a family of linear Mahler operators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا