Do you want to publish a course? Click here

Optical and Near-Infrared Spectra of sigma Orionis Isolated Planetary-mass Objects

121   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have obtained low-resolution optical (0.7-0.98 micron) and near-infrared (1.11-1.34 micron and 0.8-2.5 micron) spectra of twelve isolated planetary-mass candidates (J = 18.2-19.9 mag) of the 3-Myr sigma Orionis star cluster with a view to determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0-L4.5 and M9-L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6-13 Mjup). These observations complete the sigma Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of $sim$75 percent. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350-1800 K and a low surface gravity of log g ~ 4.0 [cm/s2], as would be expected for young planetary-mass objects. We discuss the properties of the cluster least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of sigma Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the sigma Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of 200-300 K and masses in the interval 6-13-Mjup may be as numerous as very low-mass stars.



rate research

Read More

OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obtained Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
The detailed chemical composition of stars is important in many astrophysical fields, among which the characterisation of exoplanetary systems. Previous studies seem to indicate an anomalous chemical pattern of the youngest stellar population in the solar vicinity with a sub-solar metal content. This can influence various observational relations linking the properties of exoplanets to the characteristics of the host stars, for example the giant planet-metallicity relation. In this framework, we aim to expand our knowledge of the chemical composition of intermediate-age stars and understand whether these peculiarities are real or related to spectroscopic analysis techniques. We analysed high-resolution optical and near-infrared GIARPS spectra of intermediate-age stars (< 700Myr). To overcome issues related to the young ages of the stars, we applied a new spectroscopic method that uses titanium lines to derive the atmospheric parameters, in particular surface gravities and microturbulence velocity parameter. We also derived abundances of 14 different atomic species. The lack of systematic trends between elemental abundances and effective temperatures validates our method. However, we observed that the coolest (<5400 K) stars in the sample, display higher abundances for the Cr II, and for high-excitation potential C I lines. We found a positive correlation between the higher abundances measured of C I and Cr II and the activity index logR$_{HK}$. Instead, we found no correlations between the C abundances obtained from CH molecular band at 4300AA, and both effective temperatures and activity. Thus, we suggest that these are better estimates for C abundances in young and cool stars. Finally, we found an indication of an increasing abundance ratio [X/H] with the condensation temperature for HD167389, indicating possible episodes of planet engulfment.
We investigate the mass function in the substellar domain down to a few Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d = 360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of 790 arcmin^2 close to the cluster centre. This survey was complemented with an infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using colour-magnitude diagrams, we have selected 49 candidate cluster members in the magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0 mum and previously known spectral features of youth, 30 objects are bona fide cluster members. Four are first identified from our optical-near infrared data. Eleven have most probable masses below the deuterium burning limit and are classified as planetary-mass object candidates. The slope of the substellar mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M < 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects form via fragmentation, may lie below 0.006 Msol. The frequency of sigma Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity in the mass function and in the frequency of discs suggests that very low-mass stars and substellar objects, even below the deuterium-burning mass limit, may share the same formation mechanism.
We report on the mass and distance measurements of two single-lens events from the 2015 emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf. Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a $45pm7$ $M_{rm J}$ brown dwarf at $5.9pm1.0$ kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a $0.50pm0.04$ $M_odot$ star at $6.9pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted.
105 - K. Pe~na Ramirez 2011
(Abridged) We aim to: i) confirm the presence of methane absorption in S Ori 73 (a T-type member candidate of the sig Orionis cluster, 3 Myr, 352 pc) through methane imaging; ii) study S Ori 70 and 73 cluster membership via photometric colors and accurate proper motion analysis; iii) perform a new search to identify additional T-type sig Orionis member candidates with likely masses below 7 Mjup. We obtained HAWK-I (VLT) J, H, and CH4off photometry of an area of 119.15 sq. arcmin in sig Orionis down to Jcomp = 21.7 and Hcomp = 21 mag. Near-infrared data were complemented with optical photometry using images acquired with OSIRIS (GTC) and VISTA as part of the VISTA Orion survey. We derived proper motions by comparison of the new HAWK-I and VISTA images with published near-infrared data taken 3.4 - 7.9 yr ago. S Ori 73 has a red H-CH4off color indicating methane absorption in the H-band and a spectral type of T4 +/- 1. S Ori 70 displays a redder methane color than S Ori 73 in agreement with its latter spectral classification. Our proper motion measurements are larger than the motion of sig Orionis, rendering S Ori 70 and 73 cluster membership uncertain. We identified one new photometric candidate with J = 21.69 +/- 0.12 mag and methane color consistent with spectral type greater than T8. S Ori 73 has colors similar to those of T3-T5 field dwarfs, which in addition to its high proper motion suggests that it is probably a field dwarf located at 170-200 pc. The origin of S Ori 70 remains unclear: it can be a field, foreground mid- to late-T free-floating dwarf with peculiar colors, or an orphan planet ejected through strong dynamical interactions from sig Orionis or from a nearby star-forming region in Orion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا