No Arabic abstract
The x86isa library, incorporated in the ACL2 community books project, provides a formal model of the x86 instruction-set architecture and supports reasoning about x86 machine-code programs. However, analyzing x86 programs can be daunting -- even for those familiar with program verification, in part due to the complexity of the x86 ISA. Furthermore, the x86isa library is a large framework, and using and/or contributing to it may not seem straightforward. We present some typical ways of working with the x86isa library, and describe some of its salient features that can make the analysis of x86 machine-code programs less arduous. We also discuss some capabilities that are currently missing from these books -- we hope that this will encourage the community to get involved in this project.
This paper describes the recent development of ESPnet (https://github.com/espnet/espnet), an end-to-end speech processing toolkit. This project was initiated in December 2017 to mainly deal with end-to-end speech recognition experiments based on sequence-to-sequence modeling. The project has grown rapidly and now covers a wide range of speech processing applications. Now ESPnet also includes text to speech (TTS), voice conversation (VC), speech translation (ST), and speech enhancement (SE) with support for beamforming, speech separation, denoising, and dereverberation. All applications are trained in an end-to-end manner, thanks to the generic sequence to sequence modeling properties, and they can be further integrated and jointly optimized. Also, ESPnet provides reproducible all-in-one recipes for these applications with state-of-the-art performance in various benchmarks by incorporating transformer, advanced data augmentation, and conformer. This project aims to provide up-to-date speech processing experience to the community so that researchers in academia and various industry scales can develop their technologies collaboratively.
We present the numu to nue appearance and the numu disappearance results, using a total of 1.43 x 10^{20} protons on target collected with the T2K experiment. T2K is long baseline neutrino experiment in Japan with detectors located at J-PARC, Tokai, and at Kamioka in the Gifu Prefecture, situated 295 km away from J-PARC. The muon neutrino beam is produced and measured at the near detectors at J-PARC whilst the neutrino rates after oscillation are measured with the Super-Kamiokande detector, at Kamioka. A total of six events pass all the selection criteria for numu to nue oscillations at the far detector Super-Kamiokande, leading to 0.03(0.04) < sin^2 2theta_{13} < 0.28(0.34) for deltaCP = 0 and normal (inverted) hierarchy at 90% C.L. The numu disappearance analysis excludes no oscillations at 4.3 sigma. At 90% C.L., the best fit values are sin^2 2theta_{23} > 0.84 and 2.1 x 10^{-3} < Delta m^2_{23} (eV^2) < 3.1 x 10^{-3}. Finally, we present an overview of the T2K plans from 2011 onwards.
We report the preliminary R values for all the 85 energy points scanned in the energy region of 2-5 GeV with the upgraded Beijing Spectrometer (BESII) at Beijing Electron Positron Collider (BEPC). Preliminary results from the J/psi data collected with both BESI and BESII are presented. Measurements of the branching fraction of the psi(2S) decays and the psi(2S) resonance parameters are reported. The future plans, i.e. significantly upgrade the machine and detector are also discussed.
The paper discusses future experiments at super $B$ factories. It presents the physics motivation and the tools, accelerators and detectors, and reviews the status of the two projects, SuperKEKB/Belle-II in Japan and SuperB in Italy.
The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), SAOs main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI and single dish observations. Antenna reassembly at Summit Station should take place during the summer of 2018.