Do you want to publish a course? Click here

Tomonaga-Luttinger spin liquid in the spin-1/2 inequilateral diamond-chain compound K$_3$Cu$_3$AlO$_2$(SO$_4$)$_4$

414   0   0.0 ( 0 )
 Added by Masayoshi Fujihala
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

K$_3$Cu$_3$AlO$_2$(SO$_4$)$_4$ is a highly one-dimensional spin-1/2 inequilateral diamond-chain antiferromagnet. Spinon continuum and spin-singlet dimer excitations are observed in the inelastic neutron scattering spectra, which is in excellent agreement with a theoretical prediction: a dimer-monomer composite structure, where the dimer is caused by strong antiferromagnetic (AFM) coupling and the monomer forms an almost isolated quantum AFM chain controlling low-energy excitations. Moreover, muon spin rotation/relaxation spectroscopy shows no long-range ordering down to 90~mK, which is roughly three orders of magnitude lower than the exchange interaction of the quantum AFM chain. K$_3$Cu$_3$AlO$_2$(SO$_4$)$_4$ is, thus, regarded as a compound that exhibits a Tomonaga-Luttinger spin liquid behavior at low temperatures close to the ground state.

rate research

Read More

Fedotovite K$_2$Cu$_3$O(SO$_4$)$_3$ is a candidate of new quantum spin systems, in which the edge-shared tetrahedral (EST) spin-clusters consisting of Cu$^{2+}$ are connected by weak inter-cluster couplings to from one-dimensional array. Comprehensive experimental studies by magnetic susceptibility, magnetization, heat capacity, and inelastic neutron scattering measurements reveal the presence of an effective $S$ = 1 Haldane state below $T cong 4$ K. Rigorous theoretical studies provide an insight into the magnetic state of K$_2$Cu$_3$O(SO$_4$)$_3$: an EST cluster makes a triplet in the ground state and one-dimensional chain of the EST induces a cluster-based Haldane state. We predict that the cluster-based Haldene state emerges whenever the number of tetrahedra in the EST is $even$.
The compounds A$_2$Cu$_3$O(SO$_4$)$_3$ (A=Na, K) are characterized by copper hexamers which are weakly coupled to realize antiferromagnetic order below TN=3 K. They constitute novel quantum spin systems with S=1 triplet ground-states. We investigated the energy-level splittings of the copper hexamers by inelastic neutron scattering experiments covering the entire range of the magnetic excitation spectra. The observed transitions are governed by very unusual selection rules which we ascribe to the underlying spin-coupling topology. This is rationalized by model calculations which allow an unambiguous interpretation of the magnetic excitations concerning both the peak assignments and the nature of the spin-coupling parameters.
Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquid, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner sharing square planar CuO$_4$ units have been intensely studied due to their Mott insulating grounds state which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O, a promising alternative to layered perovskites. The orthorhombic phase (space group $Pnma$) is made of corrugated layers of corner-sharing CuO$_4$ square-planar units that are edge-shared with TeO$_4$ units. The layers are linked by slabs of corner-sharing CuO$_4$ and SO$_4$. Using both the bond valence sum analysis and magnetization data, we find purely Cu$^{2+}$ ions within the layers, but a mixed valence of Cu$^{2+}$/Cu${^+}$ between the layers. Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O undergoes an antiferromagnetic transition at $T_N$=67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at $T^{star}$=12 K evidenced by a kink in the heat capacity. The spin-canting transition is explained based on a $J_1$-$J_2$ model of magnetic interactions, which is consistent with the slightly different in-plane super-exchange paths. We present Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.
Quantum spin liquids are exotic states of matter which form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of {kni} forming a three dimensional network of Ni$^{2+}$ spins. Using density functional theory calculations we show that this network consists of two interconnected spin-1 trillium lattices. In the absence of a magnetic field, magnetization, specific heat, neutron scattering and muon spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field $B gtrsim 4$ T diminishes the ordered component and drives the system in a pure quantum spin liquid state. This shows that a system of interconnected $S=1$ trillium lattices exhibit a significantly elevated level of geometrical frustration.
In this joint experimental and theoretical work magnetic properties of the Cu$^{2+}$ mineral szenicsite Cu$_3$(MoO$_4$)(OH)$_4$ are investigated. This compound features isolated triple chains in its crystal structure, where the central chain involves an edge-sharing geometry of the CuO$_4$ plaquettes, while the two side chains feature a corner-sharing zig-zag geometry. The magnetism of the side chains can be described in terms of antiferromagnetic dimers with a coupling larger than 200 K. The central chain was found to be a realization of the frustrated antiferromagnetic $J_1$-$J_2$ chain model with $J_1simeq 68$ K and a sizable second-neighbor coupling $J_2$. The central and side chains are nearly decoupled owing to interchain frustration. Therefore, the low-temperature behavior of szenicsite should be entirely determined by the physics of the central frustrated $J_1$-$J_2$ chain. Our heat-capacity measurements reveal an accumulation of entropy at low temperatures and suggest a proximity of the system to the Majumdar-Ghosh point of the antiferromagnetic $J_1$-$J_2$ spin chain, $J_2/J_1=0.5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا