The clustering of H$beta$+[OIII] and [OII] emitters since $z sim 5$: dependencies with line luminosity and stellar mass


Abstract in English

We investigate the clustering properties of $sim 7000$ H$beta$+[OIII] and [OII] narrowband-selected emitters at $z sim 0.8 - 4.7$ from the High-$z$ Emission Line Survey. We find clustering lengths, $r_0$, of $1.5 - 4.0h^{-1}$ Mpc and minimum dark matter halo masses of $10^{10.7 - 12.1}rm{M}_odot$ for our $z = 0.8 - 3.2$ H$beta$+[OIII] emitters and $r_0 sim 2.0 - 8.3h^{-1}$ Mpc and halo masses of $10^{11.5 - 12.6}rm{M}_odot$ for our $z = 1.5 - 4.7$ [OII] emitters. We find $r_0$ to strongly increase both with increasing line luminosity and redshift. By taking into account the evolution of the characteristic line luminosity, $L^star(z)$, and using our model predictions of halo mass given $r_0$, we find a strong, redshift-independent increasing trend between $L/L^star(z)$ and minimum halo mass. The faintest H$beta$+[OIII] emitters are found to reside in $10^{9.5}rm{M}_odot$ halos and the brightest emitters in $10^{13.0}rm{M}_odot$ halos. For [OII] emitters, the faintest emitters are found in $10^{10.5} rm{M}_odot$ halos and the brightest emitters in $10^{12.6}rm{M}_odot$ halos. A redshift-independent stellar mass dependency is also observed where the halo mass increases from $10^{11}rm{M}_odot$ to $10^{12.5} rm{M}_odot$ for stellar masses of $10^{8.5}rm{M}_odot$ to $10^{11.5}rm{M}_odot$, respectively. We investigate the interdependencies of these trends by repeating our analysis in a $L_textrm{line} - rm{M}_textrm{star}$ grid space for our most populated samples (H$beta$+[OIII] $z = 0.84$ and [OII] $z = 1.47$) and find that the line luminosity dependency is stronger than the stellar mass dependency on halo mass. For $L > L^star$ emitters at all epochs, we find a relatively flat trend with halo masses of $10^{12.5 - 13}rm{M}_odot$ which may be due to quenching mechanisms in massive halos which is consistent with a transitional halo mass predicted by models.

Download