No Arabic abstract
We completely classify the possible extensions between semistable vector bundles on the Fargues-Fontaine curve (over an algebraically closed perfectoid field), in terms of a simple condition on Harder-Narasimhan polygons. Our arguments rely on a careful study of various moduli spaces of bundle maps, which we define and analyze using Scholzes language of diamonds. This analysis reduces our main results to a somewhat involved combinatorial problem, which we then solve via a reinterpretation in terms of the euclidean geometry of Harder-Narasimhan polygons.
We completely classify all quotient bundles of a given vector bundle on the Fargues-Fontaine curve. As consequences, we have two additional classification results: a complete classification of all vector bundles that are generated by a fixed number of global sections and a nearly complete classification of subbundles of a given vector bundle. For the proof, we combine the dimension counting argument for moduli of bundle maps developed in [BFH+17] with a series of reduction arguments based on some reinterpretation of the classifying conditions.
We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which extends (in a suitable sense) Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over the ring of integers of a finite extension of $mathbf{Q}_p$. This cohomology theory factors through the category of rigid analytic motives of Ayoub.
We completely classify all subbundles of a given vector bundle on the Fargues-Fontaine curve. Our classification is given in terms of a simple and explicit condition on Harder-Narasimhan polygons. Our proof is inspired by the proof of the main theorem in [Hon19], but also involves a number of nontrivial adjustments.
We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one category to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-etale cohomology of the open disk and the affine space, of independent interest.
Given three arbitrary vector bundles on the Fargues-Fontaine curve where one of them is assumed to be semistable, we give an explicit and complete criterion in terms of Harder-Narasimha polygons on whether there exists a short exact sequence among them. Our argument is based on a dimension analysis of certain moduli spaces of bundle maps and bundle extensions using Scholzes theory of diamonds.