Do you want to publish a course? Click here

Extensions of Vector Bundles on the Fargues-Fontaine Curve

155   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We completely classify the possible extensions between semistable vector bundles on the Fargues-Fontaine curve (over an algebraically closed perfectoid field), in terms of a simple condition on Harder-Narasimhan polygons. Our arguments rely on a careful study of various moduli spaces of bundle maps, which we define and analyze using Scholzes language of diamonds. This analysis reduces our main results to a somewhat involved combinatorial problem, which we then solve via a reinterpretation in terms of the euclidean geometry of Harder-Narasimhan polygons.



rate research

Read More

181 - Serin Hong 2019
We completely classify all quotient bundles of a given vector bundle on the Fargues-Fontaine curve. As consequences, we have two additional classification results: a complete classification of all vector bundles that are generated by a fixed number of global sections and a nearly complete classification of subbundles of a given vector bundle. For the proof, we combine the dimension counting argument for moduli of bundle maps developed in [BFH+17] with a series of reduction arguments based on some reinterpretation of the classifying conditions.
We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which extends (in a suitable sense) Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over the ring of integers of a finite extension of $mathbf{Q}_p$. This cohomology theory factors through the category of rigid analytic motives of Ayoub.
200 - Serin Hong 2019
We completely classify all subbundles of a given vector bundle on the Fargues-Fontaine curve. Our classification is given in terms of a simple and explicit condition on Harder-Narasimhan polygons. Our proof is inspired by the proof of the main theorem in [Hon19], but also involves a number of nontrivial adjustments.
We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one category to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-etale cohomology of the open disk and the affine space, of independent interest.
203 - Serin Hong 2020
Given three arbitrary vector bundles on the Fargues-Fontaine curve where one of them is assumed to be semistable, we give an explicit and complete criterion in terms of Harder-Narasimha polygons on whether there exists a short exact sequence among them. Our argument is based on a dimension analysis of certain moduli spaces of bundle maps and bundle extensions using Scholzes theory of diamonds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا