A polynomial time algorithm for the Lambek calculus with brackets of bounded order


Abstract in English

Lambek calculus is a logical foundation of categorial grammar, a linguistic paradigm of grammar as logic and parsing as deduction. Pentus (2010) gave a polynomial-time algorithm for determ- ining provability of bounded depth formulas in the Lambek calculus with empty antecedents allowed. Pentus algorithm is based on tabularisation of proof nets. Lambek calculus with brackets is a conservative extension of Lambek calculus with bracket modalities, suitable for the modeling of syntactical domains. In this paper we give an algorithm for provability the Lambek calculus with brackets allowing empty antecedents. Our algorithm runs in polynomial time when both the formula depth and the bracket nesting depth are bounded. It combines a Pentus-style tabularisation of proof nets with an automata-theoretic treatment of bracketing.

Download