Do you want to publish a course? Click here

A polynomial time algorithm for the Lambek calculus with brackets of bounded order

82   0   0.0 ( 0 )
 Added by Stepan Kuznetsov
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Lambek calculus is a logical foundation of categorial grammar, a linguistic paradigm of grammar as logic and parsing as deduction. Pentus (2010) gave a polynomial-time algorithm for determ- ining provability of bounded depth formulas in the Lambek calculus with empty antecedents allowed. Pentus algorithm is based on tabularisation of proof nets. Lambek calculus with brackets is a conservative extension of Lambek calculus with bracket modalities, suitable for the modeling of syntactical domains. In this paper we give an algorithm for provability the Lambek calculus with brackets allowing empty antecedents. Our algorithm runs in polynomial time when both the formula depth and the bracket nesting depth are bounded. It combines a Pentus-style tabularisation of proof nets with an automata-theoretic treatment of bracketing.



rate research

Read More

76 - Stepan Kuznetsov 2017
We present a translation of the Lambek calculus with brackets and the unit constant, $mathbf{Lb}^{boldsymbol{*}}_{mathbf{1}}$, into the Lambek calculus with brackets allowing empty antecedents, but without the unit constant, $mathbf{Lb}^{boldsymbol{*}}$. Using this translation, we extend previously known results for $mathbf{Lb}^{boldsymbol{*}}$ to $mathbf{Lb}^{boldsymbol{*}}_{mathbf{1}}$: (1) languages generated by categorial grammars based on the Lambek calculus with brackets are context-free (Kanazawa 2017); (2) the polynomial-time algorithm for deciding derivability of bounded depth sequents (Kanovich et al. 2017).
We give a proof-theoretic and algorithmic complexity analysis for systems introduced by Morrill to serve as the core of the CatLog categorial grammar parser. We consider two rece
76 - Lachlan McPheat 2021
We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality, which has a limited version of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality as defined on Differential Categories. We instantiate this category to finite dimensional vector spaces and linear maps via quantisation functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of this extended calculus: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors
The Lambek calculus is a well-known logical formalism for modelling natural language syntax. The original calculus covered a substantial number of intricate natural language phenomena, but only those restricted to the context-free setting. In order to address more subtle linguistic issues, the Lambek calculus has been extended in various ways. In particular, Morrill and Valentin (2015) introduce an extension with so-called exponential and bracket modalities. Their extension is based on a non-standard contraction rule for the exponential that interacts with the bracket structure in an intricate way. The standard contraction rule is not admissible in this calculus. In this paper we prove undecidability of the derivability problem in their calculus. We also investigate restricted decidable fragments considered by Morrill and Valentin and we show that these fragments belong to the NP class.
265 - Stepan Kuznetsov 2017
Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these t
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا