Do you want to publish a course? Click here

Competing spin liquids and hidden nematic order in spin ice with frustrated transverse exchange

104   0   0.0 ( 0 )
 Added by Owen Benton Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2Ti2O7 and Dy2Ti2O7 exemplify this phenomenon, displaying a classical spin liquid state, with fractionalized magnetic--monopole excitations. Recently there has been great interest in closely-related quantum spin ice materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively-entangled, quantum, spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realise a still-richer scenario. Using a combination of classical Monte Carlo simulation, semi--classical molecular--dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three, competing forms of spin liquid, as well as a phase with hidden, spin-nematic, order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.



rate research

Read More

Quantum spin ice materials, pyrochlore magnets with competing Ising and transverse exchange interactions, have been widely discussed as candidates for a quantum spin-liquid ground state. Here, motivated by quantum chemical calculations for Pr pyrochlores, we present the results of a study for frustrated transverse exchange. Using a combination of variational calculations, exact diagonalisation, numerical linked-cluster and series expansions, we find that the previously-studied U(1) quantum spin liquid, in its pi-flux phase, transforms into a nematic quantum spin liquid at a high-symmetry, SU(2) point.
Despite the enormous interest in quantum spin liquids, their experimental existence still awaits broad consensus. In particular, quenched disorder may turn a specific system into a spin glass and possibly preclude the formation of a quantum spin liquid. Here, we demonstrate that the glass transition among geometrically frustrated magnets, a materials class in which spin liquids are expected, differs qualitatively from conventional spin glass. Whereas conventional systems have a glass temperature that increases with increasing disorder, geometrically frustrated systems have a glass temperature that increases with decreasing disorder, approaching, in the clean limit, a finite value. This behaviour implies the existence of a hidden energy scale (far smaller than the Weiss constant) which is independent of disorder and drives the glass transition in the presence of disorder. Motivated by these observations, we propose a scenario in which the interplay of interactions and entropy in the disorder-free system yields a temperature-dependent magnetic permeability with a crossover temperature that determines the hidden energy scale. The relevance of this scale for quantum spin liquids is discussed.
Motivated by the recent synthesis of the spin-1 A-site spinel NiRh$_{text 2}$O$_{text 4}$, we investigate the classical to quantum crossover of a frustrated $J_1$-$J_2$ Heisenberg model on the diamond lattice upon varying the spin length $S$. Applying a recently developed pseudospin functional renormalization group (pf-FRG) approach for arbitrary spin-$S$ magnets, we find that systems with $S geq 3/2$ reside in the classical regime where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments $S$=1 or $S$=1/2 we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh$_{text 2}$O$_{text 4}$, a modified $J_1$-$J_2^-$-$J_2^perp$ exchange model is found to favor a conventionally ordered Neel state (for arbitrary spin $S$) even in the presence of a strong local single-ion spin anisotropy and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.
The competing magnetic ground states of the itinerant magnet EuCuSb, which has a hexagonal layered structure, were studied via magnetization, resistivity, and neutron diffraction measurements on single-crystal samples. EuCuSb has a three-dimensional semimetallic band structure as confirmed by band calculation and angle-resolved photoelectron spectroscopy, consistent with the nearly isotropic metallic conductivity in the paramagnetic state. However, below the antiferromagnetic transition temperature of TN1 (8.5 K), the resistivity, especially along the hexagonal axis, increases significantly. This implies the emergence of anisotropic magnetic ordering coupled to the conducting electrons. Neutron diffraction measurements show that the Eu spins, which order ferromagnetically within each layer, are collinearly modulated (up-up-down-down) along the hexagonal axis below TN1, followed by the partial emergence of helical spin modulation below TN2 (6 K). Based on the observation of anomalous magnetoresistance with hysteretic behavior, we discuss the competing nature of the ground state inherent in a frustrated Heisenberg-like spin system with a centrosymmetric structure.
144 - S. Ji , S.-H. Lee , C. Broholm 2009
Using synchrotron X-rays and neutron diffraction we disentangle spin-lattice order in highly frustrated ZnCr$_2$O$_4$ where magnetic chromium ions occupy the vertices of regular tetrahedra. Upon cooling below 12.5 K the quandary of anti-aligning spins surrounding the triangular faces of tetrahedra is resolved by establishing weak interactions on each triangle through an intricate lattice distortion. The resulting spin order is however, not simply a N{e}el state on strong bonds. A complex co-planar spin structure indicates that antisymmetric and/or further neighbor exchange interactions also play a role as ZnCr$_2$O$_4$ resolves conflicting magnetic interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا