Do you want to publish a course? Click here

Efficient Identity Testing and Polynomial Factorization over Non-associative Free Rings

94   0   0.0 ( 0 )
 Added by S Raja
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper we study arithmetic computations in the nonassociative, and noncommutative free polynomial ring $mathbb{F}{x_1,x_2,ldots,x_n}$. Prior to this work, nonassociative arithmetic computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10], and they showed lower bounds and proved completeness results. We consider Polynomial Identity Testing (PIT) and polynomial factorization over $mathbb{F}{x_1,x_2,ldots,x_n}$ and show the following results. (1) Given an arithmetic circuit $C$ of size $s$ computing a polynomial $fin mathbb{F} {x_1,x_2,ldots,x_n}$ of degree $d$, we give a deterministic $poly(n,s,d)$ algorithm to decide if $f$ is identically zero polynomial or not. Our result is obtained by a suitable adaptation of the PIT algorithm of Raz-Shpilka [RS05] for noncommutative ABPs. (2) Given an arithmetic circuit $C$ of size $s$ computing a polynomial $fin mathbb{F} {x_1,x_2,ldots,x_n}$ of degree $d$, we give an efficient deterministic algorithm to compute circuits for the irreducible factors of $f$ in time $poly(n,s,d)$ when $mathbb{F}=mathbb{Q}$. Over finite fields of characteristic $p$, our algorithm runs in time $poly(n,s,d,p)$.



rate research

Read More

We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity.
We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich natural proofs barrier in Boolean circuit complexity, in that we rule out a large class of lower bound techniques under a derandomization assumption. We also discuss connections between this algebraic natural proofs barrier, geometric complexity theory, and (algebraic) proof complexity.
Let $C$ be a depth-3 arithmetic circuit of size at most $s$, computing a polynomial $ f in mathbb{F}[x_1,ldots, x_n] $ (where $mathbb{F}$ = $mathbb{Q}$ or $mathbb{C}$) and the fan-in of the product gates of $C$ is bounded by $d$. We give a deterministic polynomial identity testing algorithm to check whether $fequiv 0$ or not in time $ 2^d text{ poly}(n,s) $.
One approach to make progress on the symbolic determinant identity testing (SDIT) problem is to study the structure of singular matrix spaces. After settling the non-commutative rank problem (Garg-Gurvits-Oliveira-Wigderson, Found. Comput. Math. 2020; Ivanyos-Qiao-Subrahmanyam, Comput. Complex. 2018), a natural next step is to understand singular matrix spaces whose non-commutative rank is full. At present, examples of such matrix spaces are mostly sporadic, so it is desirable to discover them in a more systematic way. In this paper, we make a step towards this direction, by studying the family of matrix spaces that are closed under the commutator operation, that is matrix Lie algebras. On the one hand, we demonstrate that matrix Lie algebras over the complex number field give rise to singular matrix spaces with full non-commutative ranks. On the other hand, we show that SDIT of such spaces can be decided in deterministic polynomial time. Moreover, we give a characterization for the matrix Lie algebras to yield a matrix space possessing singularity certificates as studied by Lovasz (B. Braz. Math. Soc., 1989) and Raz and Wigderson (Building Bridges II, 2019).
The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that $n$-variate polynomials of total degree at most $d$ over grids, i.e. sets of the form $A_1 times A_2 times cdots times A_n$, form error-correcting codes (of distance at least $2^{-d}$ provided $min_i{|A_i|}geq 2$). In this work we explore their local decodability and (tolerant) local testability. While these aspects have been studied extensively when $A_1 = cdots = A_n = mathbb{F}_q$ are the same finite field, the setting when $A_i$s are not the full field does not seem to have been explored before. In this work we focus on the case $A_i = {0,1}$ for every $i$. We show that for every field (finite or otherwise) there is a test whose query complexity depends only on the degree (and not on the number of variables). In contrast we show that decodability is possible over fields of positive characteristic (with query complexity growing with the degree of the polynomial and the characteristic), but not over the reals, where the query complexity must grow with $n$. As a consequence we get a natural example of a code (one with a transitive group of symmetries) that is locally testable but not locally decodable. Classical results on local decoding and testing of polynomials have relied on the 2-transitive symmetries of the space of low-degree polynomials (under affine transformations). Grids do not possess this symmetry: So we introduce some new techniques to overcome this handicap and in particular use the hypercontractivity of the (constant weight) noise operator on the Hamming cube.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا