Do you want to publish a course? Click here

On the sub-Gaussianity of the Beta and Dirichlet distributions

88   0   0.0 ( 0 )
 Added by Julyan Arbel
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We obtain the optimal proxy variance for the sub-Gaussianity of Beta distribution, thus proving upper bounds recently conjectured by Elder (2016). We provide different proof techniques for the symmetrical (around its mean) case and the non-symmetrical case. The technique in the latter case relies on studying the ordinary differential equation satisfied by the Beta moment-generating function known as the confluent hypergeometric function. As a consequence, we derive the optimal proxy variance for the Dirichlet distribution, which is apparently a novel result. We also provide a new proof of the optimal proxy variance for the Bernoulli distribution, and discuss in this context the proxy variance relation to log-Sobolev inequalities and transport inequalities.



rate research

Read More

362 - Andrew Ying , Wen-Xin Zhou 2019
We investigate the asymptotic behavior of several variants of the scan statistic applied to empirical distributions, which can be applied to detect the presence of an anomalous interval with any length. Of particular interest is Studentized scan statistic that is preferable in practice. The main ingredients in the proof are Kolmogorovs theorem, a Poisson approximation, and recent technical results by Kabluchko et al (2014).
143 - Chunlin Wang 2006
In this paper, we propose a method based on GMM (the generalized method of moments) to estimate the parameters of stable distributions with $0<alpha<2$. We dont assume symmetry for stable distributions.
125 - Alice Le Brigant 2019
This paper studies the Fisher-Rao geometry on the parameter space of beta distributions. We derive the geodesic equations and the sectional curvature, and prove that it is negative. This leads to uniqueness for the Riemannian centroid in that space. We use this Riemannian structure to study canonical moments, an intrinsic representation of the moments of a probability distribution. Drawing on the fact that a uniform distribution in the regular moment space corresponds to a product of beta distributions in the canonical moment space, we propose a mapping from the space of canonical moments to the product beta manifold, allowing us to use the Fisher-Rao geometry of beta distributions to compare and analyze canonical moments.
Suppose that particles are randomly distributed in $bR^d$, and they are subject to identical stochastic motion independently of each other. The Smoluchowski process describes fluctuations of the number of particles in an observation region over time. This paper studies properties of the Smoluchowski processes and considers related statistical problems. In the first part of the paper we revisit probabilistic properties of the Smoluchowski process in a unified and principled way: explicit formulas for generating functionals and moments are derived, conditions for stationarity and Gaussian approximation are discussed, and relations to other stochastic models are highlighted. The second part deals with statistics of the Smoluchowki processes. We consider two different models of the particle displacement process: the undeviated uniform motion (when a particle moves with random constant velocity along a straight line) and the Brownian motion displacement. In the setting of the undeviated uniform motion we study the problems of estimating the mean speed and the speed distribution, while for the Brownian displacement model the problem of estimating the diffusion coefficient is considered. In all these settings we develop estimators with provable accuracy guarantees.
Bayesian nonparametric hierarchical priors are highly effective in providing flexible models for latent data structures exhibiting sharing of information between and across groups. Most prominent is the Hierarchical Dirichlet Process (HDP), and its subsequent variants, which model latent clustering between and across groups. The HDP, may be viewed as a more flexible extension of Latent Dirichlet Allocation models (LDA), and has been applied to, for example, topic modelling, natural language processing, and datasets arising in health-care. We focus on analogous latent feature allocation models, where the data structures correspond to multisets or unbounded sparse matrices. The fundamental development in this regard is the Hierarchical Indian Buffet process (HIBP), which utilizes a hierarchy of Beta processes over J groups, where each group generates binary random matrices, reflecting within group sharing of features, according to beta-Bernoulli IBP priors. To encompass HI
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا