Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple, isotropic interactions. We consider the entire class of these magnets when their interactions are spatially anisotropic. We do so by identifying a certain class of systems whose degenerate ground states can be mapped onto the folding motions of a generalized spin origami two-dimensional mechanical sheet. Some such anisotropic spin systems, including Cs2ZrCu3F12, map onto flat origami sheets, possessing extensive degeneracy similar to isotropic systems. Others, such as Cs2CeCu3F12, can be mapped onto sheets with non-zero Gaussian curvature, leading to more mechanically stable corrugated surfaces. Remarkably, even such distortions do not always lift the entire degeneracy, instead permitting a large but sub-extensive space of zero-energy modes. We show that for Cs2CeCu3F12, due to an additional point group symmetry associated with structure, these modes are Dirac line nodes with a double degeneracy protected by a topological invariant. The existence of mechanical analogs thus serves to identify and explicate the robust degeneracy of the spin systems.