Structural Parameters, Tight Bounds, and Approximation for (k,r)-Center


Abstract in English

In $(k,r)$-Center we are given a (possibly edge-weighted) graph and are asked to select at most $k$ vertices (centers), so that all other vertices are at distance at most $r$ from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any $rge 1$, we show an algorithm that solves the problem in $O^*((3r+1)^{textrm{cw}})$ time, where $textrm{cw}$ is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithms performance. As a corollary, for $r=1$, this closes the gap that previously existed on the complexity of Dominating Set parameterized by $textrm{cw}$. - We strengthen previously known FPT lower bounds, by showing that $(k,r)$-Center is W[1]-hard parameterized by the input graphs vertex cover (if edge weights are allowed), or feedback vertex set, even if $k$ is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is $2^{Theta(textrm{td}^2)}$ by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of $k,r$. In particular, we give algorithms which, for any $epsilon>0$, run in time $O^*((textrm{tw}/epsilon)^{O(textrm{tw})})$, $O^*((textrm{cw}/epsilon)^{O(textrm{cw})})$ and return a $(k,(1+epsilon)r)$-center, if a $(k,r)$-center exists, thus circumventing the problems W-hardness.

Download