Do you want to publish a course? Click here

Weak group inverse

109   0   0.0 ( 0 )
 Added by Hongxing Wang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce a weak group inverse (called the WG inverse in the present paper) for square matrices of an arbitrary index, and give some of its characterizations and properties. Furthermore, we introduce two orders: one is a pre-order and the other is a partial order, and derive several characterizations of the two orders. At last, one characterization of the core-EP order is derived by using the WG inverses.



rate research

Read More

We present new additive results for the group inverse in a Banach algebra under certain perturbations. The upper bound of $|(a+b)^{#}-a^d|$ is thereby given. These extend the main results in [X. Liu, Y. Qin and H. Wei, Perturbation bound of the group inverse and the generalized Schur complement in Banach algebra, Abstr. Appl. Anal., 2012, 22 pages. DOI:10.1155/2012/629178].
A completely inverse $AG^{**}$-groupoid is a groupoid satisfying the identities $(xy)z=(zy)x$, $x(yz)=y(xz)$ and $xx^{-1}=x^{-1}x$, where $x^{-1}$ is a unique inverse of $x$, that is, $x=(xx^{-1})x$ and $x^{-1}=(x^{-1}x)x^{-1}$. First we study some fundamental properties of such groupoids. Then we determine certain fundamental congruences on a completely inverse $AG^{**}$-groupoid; namely: the maximum idempotent-separating congruence, the least $AG$-group congruence and the least $E$-unitary congruence. Finally, we investigate the complete lattice of congruences of a completely inverse $AG^{**}$-groupoids. In particular, we describe congruences on completely inverse $AG^{**}$-groupoids by their kernel and trace.
128 - Gilles G. de Castro 2020
First we give a definition of a coverage on a inverse semigroup that is weaker than the one gave by a Lawson and Lenz and that generalizes the definition of a coverage on a semilattice given by Johnstone. Given such a coverage, we prove that there exists a pseudogroup that is universal in the sense that it transforms cover-to-join idempotent-pure maps into idempotent-pure pseudogroup homomorphisms. Then, we show how to go from a nucleus on a pseudogroup to a topological groupoid embedding of the corresponding groupoids. Finally, we apply the results found to study Exels notions of tight filters and tight groupoids.
190 - V.A. Bovdi , A.B. Konovalov 2008
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Rudvalis sporadic simple group Ru. As a consequence, for this group we confirm Kimmerles conjecture on prime graphs.
101 - V.A. Bovdi 2009
A p-group is called powerful if every commutator is a product of pth powers when p is odd and a product of fourth powers when p=2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا