Hardware for Dynamic Quantum Computing


Abstract in English

We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fedback or fedforward within a fraction of the qubits coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow on a fraction superconducting qubit coherence times. Both readout and control platforms make extensive use of FPGAs to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

Download