Do you want to publish a course? Click here

Preferential Attachment Random Graphs with Edge-Step Functions

184   0   0.0 ( 0 )
 Added by Rodrigo Ribeiro
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We propose a random graph model with preferential attachment rule and emph{edge-step functions} that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More specifically, we prove that when the edge-step function $f$ is a emph{monotone regularly varying function} at infinity, the sequence of graphs associated to it obeys a power-law degree distribution whose exponent is related to the index of regular variation of $f$ at infinity whenever said index is greater than $-1$. When the regularly variation index is less than or equal to $-1$, we show that the proportion of vertices with degree smaller than any given constant goes to $0$ a. s..



rate research

Read More

We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate phase transitions in graph structure as the relative weighting of these two components of the attachment rule is varied. Previous work of one of the authors showed that when the geometric component is weak, the limiting degree sequence of the resulting graph coincides with that of the standard Barabasi--Albert preferential attachment model. We show that at the other extreme, in the case of a sufficiently strong geometric component, the limiting degree sequence coincides with that of a purely geometric model, the on-line nearest-neighbour graph, which is of interest in its own right and for which we prove some extensions of known results. We also show the presence of an intermediate regime, in which the behaviour differs significantly from both the on-line nearest-neighbour graph and the Barabasi--Albert model; in this regime, we obtain a stretched exponential upper bound on the degree sequence. Our results lend some mathematical support to simulation studies of Manna and Sen, while proving that the power law to stretched exponential phase transition occurs at a different point from the one conjectured by those authors.
In this paper we investigate geometric properties of graphs generated by a preferential attachment random graph model with edge-steps. More precisely, at each time $tinmathbb{N}$, with probability $p$ a new vertex is added to the graph (a vertex-step occurs) or with probability $1-p$ an edge connecting two existent vertices is added (an edge-step occurs). We prove that the global clustering coefficient decays as $t^{-gamma(p)}$ for a positive function $gamma$ of $p$. We also prove that the clique number of these graphs is, up to sub-polynomially small factors, of order~$t^{(1-p)/(2-p)}$.
In this work we investigate a preferential attachment model whose parameter is a function $f:mathbb{N}to[0,1]$ that drives the asymptotic proportion between the numbers of vertices and edges of the graph. We investigate topological features of the graphs, proving general bounds for the diameter and the clique number. Our results regarding the diameter are sharp when $f$ is a regularly varying function at infinity with strictly negative index of regular variation $-gamma$. For this particular class, we prove a characterization for the diameter that depends only on $-gamma$. More specifically, we prove that the diameter of such graphs is of order $1/gamma$ with high probability, although its vertex set order goes to infinity polynomially. Sharp results for the diameter for a wide class of slowly varying functions are also obtained. The almost sure convergence for the properly normalized logarithm of the clique number of the graphs generated by slowly varying functions is also proved.
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا