Do you want to publish a course? Click here

Generalized stability for abstract homotopy theories

98   0   0.0 ( 0 )
 Added by Moritz Groth
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that a derivator is stable if and only if homotopy finite limits and homotopy finite colimits commute, if and only if homotopy finite limit functors have right adjoints, and if and only if homotopy finite colimit functors have left adjoints. These characterizations generalize to an abstract notion of stability relative to a class of functors, which includes in particular pointedness, semiadditivity, and ordinary stability. To prove them, we develop the theory of derivators enriched over monoidal left derivators and weighted homotopy limits and colimits therein.



rate research

Read More

The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as part of the defining structure of an operad and not as the underlying category. We introduce a new dual category of higher cooperads, a new higher bar-cobar adjunction with the category of operads, and a new higher notion of homotopy operads, for which we establish the relevant homotopy properties. For instance, the higher bar-cobar construction provides us with a cofibrant replacement functor for operads over any ring. All these constructions are produced conceptually by applying the curved Koszul duality for colored operads. This paper is a first step toward a new Koszul duality theory for operads, where the action of the symmetric groups is properly taken into account.
Over a monoidal model category, under some mild assumptions, we equip the categories of colored PROPs and their algebras with projective model category structures. A Boardman-Vogt style homotopy invariance result about algebras over cofibrant colored PROPs is proved. As an example, we define homotopy topological conformal field theories and observe that such structures are homotopy invariant.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
We study localization at a prime in homotopy type theory, using self maps of the circle. Our main result is that for a pointed, simply connected type $X$, the natural map $X to X_{(p)}$ induces algebraic localizations on all homotopy groups. In order to prove this, we further develop the theory of reflective subuniverses. In particular, we show that for any reflective subuniverse $L$, the subuniverse of $L$-separated types is again a reflective subuniverse, which we call $L$. Furthermore, we prove results establishing that $L$ is almost left exact. We next focus on localization with respect to a map, giving results on preservation of coproducts and connectivity. We also study how such localizations interact with other reflective subuniverses and orthogonal factorization systems. As key steps towards proving the main theorem, we show that localization at a prime commutes with taking loop spaces for a pointed, simply connected type, and explicitly describe the localization of an Eilenberg-Mac Lane space $K(G,n)$ with $G$ abelian. We also include a partial converse to the main theorem.
In previous work, we used an $infty$-categorical version of ultraproducts to show that, for a fixed height $n$, the symmetric monoidal $infty$-categories of $E_{n,p}$-local spectra are asymptotically algebraic in the prime $p$. In this paper, we prove the analogous result for the symmetric monoidal $infty$-categories of $K_{p}(n)$-local spectra, where $K_{p}(n)$ is Morava $K$-theory at height $n$ and the prime $p$. This requires $infty$-categorical tools suitable for working with compactly generated symmetric monoidal $infty$-categories with non-compact unit. The equivalences that we produce here are compatible with the equivalences for the $E_{n,p}$-local $infty$-categories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا