No Arabic abstract
We propose introspective convolutional networks (ICN) that emphasize the importance of having convolutional neural networks empowered with generative capabilities. We employ a reclassification-by-synthesis algorithm to perform training using a formulation stemmed from the Bayes theory. Our ICN tries to iteratively: (1) synthesize pseudo-negative samples; and (2) enhance itself by improving the classification. The single CNN classifier learned is at the same time generative --- being able to directly synthesize new samples within its own discriminative model. We conduct experiments on benchmark datasets including MNIST, CIFAR-10, and SVHN using state-of-the-art CNN architectures, and observe improved classification results.
We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being able to self-evaluate the difference between its generated samples and the given training data. When followed by repeated discriminative learning, desirable properties of modern discriminative classifiers are directly inherited by the generator. IGM learns a cascade of CNN classifiers using a synthesis-by-classification algorithm. In the experiments, we observe encouraging results on a number of applications including texture modeling, artistic style transferring, face modeling, and semi-supervised learning.
Convolutional neural networks trained without supervision come close to matching performance with supervised pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised convnets with preserved performance is of particular interest to make them less computationally intensive. Typical pruning methods operate during training on a task while trying to maintain the performance of the pruned network on the same task. However, in self-supervised feature learning, the training objective is agnostic on the representation transferability to downstream tasks. Thus, preserving performance for this objective does not ensure that the pruned subnetwork remains effective for solving downstream tasks. In this work, we investigate the use of standard pruning methods, developed primarily for supervised learning, for networks trained without labels (i.e. on self-supervised tasks). We show that pruned masks obtained with or without labels reach comparable performance when re-trained on labels, suggesting that pruning operates similarly for self-supervised and supervised learning. Interestingly, we also find that pruning preserves the transfer performance of self-supervised subnetwork representations.
Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}
We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INNs generative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of the INN algorithm and that of Wasserstein generative adversarial networks (WGAN) is made. (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing nearly a 20 times reduction in model size over INN for unsupervised generative modeling. (3) When applied to supervised classification, WINN also gives rise to improved robustness against adversarial examples in terms of the error reduction. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attacks.
We train generative up-convolutional neural networks which are able to generate images of objects given object style, viewpoint, and color. We train the networks on rendered 3D models of chairs, tables, and cars. Our experiments show that the networks do not merely learn all images by heart, but rather find a meaningful representation of 3D models allowing them to assess the similarity of different models, interpolate between given views to generate the missing ones, extrapolate views, and invent new objects not present in the training set by recombining training instances, or even two different object classes. Moreover, we show that such generative networks can be used to find correspondences between different objects from the dataset, outperforming existing approaches on this task.