No Arabic abstract
In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame- work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.
We study the propagation of charm quarks in the early stage of high energy proton-lead collision, considering the interaction of these quarks with the evolving Glasma by means of the Wong equations. Neglecting quantum fluctuations at the initial time the Glasma is made of longitudinal fields, but the dynamics leads to a quick formation of transverse fields; we estimate such a formation time as $Delta tapprox 0.1$ fm/c which is of the same order of the formation time of heavy quark pairs $t_mathrm{formation}approx 1/(2m)$. Limiting ourselves to the simple case of a static longitudinal geometry, we find that heavy quarks are accelerated by the strong transverse color fields in the early stage and this leads to a tilting of the $c-$quarks spectrum towards higher $p_T$ states. This average acceleration can be understood in terms of drag and diffusion of $c-$quarks in a hot medium and appears to be similar to the one felt by the electrons ejected by the electron cannon in a cathode tube: we dub this effect as {it cathode tube effect}. The tilting of the spectrum affects the nuclear modification factor, $R_mathrm{pPb}$, suppressing this below one at low $p_T$ and making it larger than one at intermediate $p_T$. We compute $R_mathrm{pPb}(p_T)$ after the evolution of charm quarks in the gluon fields and we find that its shape is in qualitative agreement with the measurements of the same quantity for $D-$mesons in proton-lead collisions.
We analyze the elliptic flow parameter v_2 in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV and in Au+Au collisions at sqrt{s_{NN}} =200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model. For initial conditions, we employ Monte-Car
In this paper, we study and predict flow observables in 2.76 A TeV and 5.02 A TeV Pb +Pb collisions, using the iEBE-VISHNU hybrid model with TRENto and AMPT initial conditions and with different forms of the QGP transport coefficients. With properly chosen and tuned parameter sets, our model calculations can nicely describe various flow observables in 2.76 A TeV Pb +Pb collisions, as well as the measured flow harmonics of all charged hadrons in 5.02 A TeV Pb +Pb collisions. We also predict other flow observables, including $v_n(p_T)$ of identified particles, event-by-event $v_n$ distributions, event-plane correlations, (Normalized) Symmetric Cumulants, non-linear response coefficients and $p_T$-dependent factorization ratios, in 5.02 A TeV Pb+Pb collisions. We find many of these observables remain approximately the same values as the ones in 2.76 A TeV Pb+Pb collisions. Our theoretical studies and predictions could shed light to the experimental investigations in the near future.
In this work we use the IP-Glasma+MUSIC+UrQMD framework to systematically study a wide range of hadronic flow observables at 2.76 TeV. In addition to the single particle spectra and anisotropic flow coefficients $v_n$ previously studied in cite{1609.02958}, we consider event-plane correlations, non-linear response coefficients $chi_{npq}$, and event shape engineering. Taken together, these observables provide a wealth of insight into the collective behavior of the QGP and initial state fluctuations. They shed light on flow fluctuations, flow at fixed system size but different initial geometries, as well as the non-linear hydrodynamic response to the initial state spatial eccentricities. By synthesizing this information we can gain further insight into the transport properties of the QGP as well as the fluctuation spectrum of the initial state.
We briefly review the predictions of the thermal model for hadron production in comparison to latest data from RHIC and extrapolate the calculations to LHC energy. Our main emphasis is to confront the model predictions with the recently released data from ALICE at the LHC. This comparison reveals an apparent anomaly for protons and anti-protons which we discuss briefly. We also demonstrate that our statistical hadronization predictions for J/$psi$ production agree very well with the most recent LHC data, lending support to the picture in which there is complete charmonium melting in the quark-gluon plasma (QGP) followed by statistical generation of J/$psi$ mesons at the phase boundary.