Dynamical phase transitions, temporal orthogonality and the dynamics of observables in one dimensional ultra-cold quantum gases: from the continuum to the lattice


Abstract in English

We investigate the dynamics of the rate function and of local observables after a quench in models which exhibit phase transitions between a superfluid and an insulator in their ground states. Zeros of the return probability, corresponding to singularities of the rate functions, have been suggested to indicate the emergence of dynamical criticality and we address the question of whether such zeros can be tied to the dynamics of physically relevant observables and hence order parameters in the systems. For this we first numerically analyze the dynamics of a hard-core boson gas in a one-dimensional waveguide when a quenched lattice potential is commensurate with the particle density. Such a system can undergo a pinning transition to an insulating state and we find non-analytic behavior in the evolution of the rate function which is indicative of dynamical phase transitions. In addition, we perform simulations of the time dependence of the momentum distribution and compare the periodicity of this collapse and revival cycle to that of the non-analyticities in the rate function: the two are found to be closely related only for deep quenches. We then confirm this observation by analytic calculations on a closely related discrete model of hard-core bosons in the presence of a staggered potential and find expressions for the rate function for the quenches. By extraction of the zeros of the Loschmidt amplitude we uncover a non-equilibrium timescale for the emergence of non-analyticities and discuss its relationship with the dynamics of the experimentally relevant parity operator.

Download