Role of Hunds splitting in electronic phase competition in ${rm Pb}_{1-x}{rm Sn}_{x}{rm Te}$


Abstract in English

We study the effect of Hunds splitting of repulsive interactions on electronic phase transitions in the multiorbital topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Te, when the chemical potential is tuned to the vicinity of low-lying Type-II Van Hove singularities. Nontrivial Berry phases associated with the Bloch states impart momentum-dependence to electron interactions in the relevant band. We use a multipatch parquet renormalization group (RG) analysis for studying the competition of different electronic phases, and find that if the dominant fixed-point interactions correspond to antiparallel spin configurations, then a chiral $p$-wave Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state is favored, otherwise, none of the commonly encountered electronic instabilities occur within the one-loop parquet RG approach.

Download