Do you want to publish a course? Click here

Investigation of nonlinear effects in glassy matter using dielectric methods

186   0   0.0 ( 0 )
 Added by Peter Lunkenheimer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We summarize current developments in the investigation of glassy matter using nonlinear dielectric spectroscopy. This work also provides a brief introduction into the phenomenology of the linear dielectric response of glass-forming materials and discusses the main mechanisms that can give rise to nonlinear dielectric response in this material class. Here we mainly concentrate on measurements of the conventional dielectric permittivity at high fields and the higher-order susceptibilities characterizing the 3-omega and 5-omega components of the dielectric response as performed in our group. Typical results on canonical glass-forming liquids and orientationally disordered plastic crystals are discussed, also treating the special case of supercooled monohydroxy alcohols.



rate research

Read More

In this work we provide a thorough examination of the nonlinear dielectric properties of a succinonitrile-glutaronitrile mixture, representing one of the rare example of a plastic crystal with fragile glassy dynamics. The detected alteration of the complex dielectric permittivity under high fields can be explained considering the heterogeneous nature of glassy dynamics and a field-induced variation of entropy. While the first mechanism was also found in structural glass formers, the latter effect seems to be typical for plastic crystals. Morover, the third harmonic component of the dielectric susceptibility is reported, revealing a spectral shape as predicted for cooperative molecular dynamics. In accord with the fragile nature of the glass transition in this plastic crystal, we deduce a relatively strong temperature dependence of the number of correlated molecules, in contrast to the much weaker temperature dependence in plastic-crystalline cyclo-octanol, whose glass transition is of strong nature.
The glassy dynamics of plastic-crystalline cyclo-octanol and ortho-carborane, where only the molecular reorientational degrees of freedom freeze without long-range order, is investigated by nonlinear dielectric spectroscopy. Marked differences to canonical glass formers show up: While molecular cooperativity governs the glassy freezing, it leads to a much weaker slowing down of molecular dynamics than in supercooled liquids. Moreover, the observed nonlinear effects cannot be explained with the same heterogeneity scenario recently applied to canonical glass formers. This supports ideas that molecular relaxation in plastic crystals may be intrinsically non-exponential. Finally, no nonlinear effects were detected for the secondary processes in cyclo-octanol.
101 - P. Boolchand 2005
Network glasses are the physical prototype for many self-organized systems, ranging from proteins to computer science. Conventional theories of gases, liquids, and crystals do not account for the strongly material-selective character of the glass-forming tendency, the phase diagrams of glasses, or their optimizable properties. A new topological theory, only 25 years old, has succeeded where conventional theories have failed. It shows that (probably all slowly quenched) glasses, including network glasses, are the result of the combined effects of a few simple mechanisms. These glass-forming mechanisms are topological in nature, and have already been identified for several important glasses, including chalcogenide alloys, silicates (window glass, computer chips), and proteins.
The temperature dependence of the non-ergodicity factor of vitreous GeO$_2$, $f_{q}(T)$, as deduced from elastic and quasi-elastic neutron scattering experiments, is analyzed. The data are collected in a wide range of temperatures from the glassy phase, up to the glass transition temperature, and well above into the undercooled liquid state. Notwithstanding the investigated system is classified as prototype of strong glass, it is found that the temperature- and the $q$-behavior of $f_{q}(T)$ follow some of the predictions of Mode Coupling Theory. The experimental data support the hypothesis of the existence of an ergodic to non-ergodic transition occurring also in network forming glassy systems.
In the present work, we employ broadband dielectric spectroscopy to study the molecular dynamics of the prototypical glass former glycerol confined in two microporous zeolitic imidazolate frameworks (ZIF-8 and ZIF-11) with well-defined pore diameters of 1.16 and 1.46 nm, respectively. The spectra reveal information on the modified alpha relaxation of the confined supercooled liquid, whose temperature dependence exhibits clear deviations from the typical super-Arrhenius temperature dependence of the bulk material, depending on temperature and pore size. This allows assigning well-defined cooperativity length scales of molecular motion to certain temperatures above the glass transition. We relate these and previous results on glycerol confined in other host systems to the temperature-dependent length scale deduced from nonlinear dielectric measurements. The combined experimental data can be consistently described by a critical divergence of this correlation length as expected within theoretical approaches assuming that the glass transition is due to an underlying phase transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا