Do you want to publish a course? Click here

Pressure tuning of structure, superconductivity and novel magnetic order in the Ce-underdoped electron-doped cuprate T-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1)

111   0   0.0 ( 0 )
 Added by Zurab Guguchia
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-pressure neutron powder diffraction, muon-spin rotation and magnetization studies of the structural, magnetic and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system T-Pr_1.3-xLa_0.7Ce_xCuO_4 with x = 0.1 are reported. A strong reduction of the lattice constants a and c is observed under pressure. However, no indication of any pressure induced phase transition from T to T structure is observed up to the maximum applied pressure of p = 11 GPa. Large and non-linear increase of the short-range magnetic order temperature T_so in T-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1) was observed under pressure. Simultaneously pressure causes a non-linear decrease of the SC transition temperature T_c. All these experiments establish the short-range magnetic order as an intrinsic and a new competing phase in SC T-Pr_1.2La_0.7Ce_0.1CuO_4. The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.



rate research

Read More

In order to investigate the electronic state of Ce-free and Ce-underdoped high-Tc cuprates with the so-called T structure, we have performed muon-spin-relaxation (muSR) and specific-heat measurements of Ce-free T-La_1.8_Eu_0.2_CuO_4+d_ (T-LECO) polycrystals and Ce-underdoped T-Pr_1.3-x_La_0.7_Ce_x_CuO_4+d_ (T-PLCCO) single crystals with x=0.10. The muSR spectra of the reduced superconducting samples of both T-LECO with Tc=15K and T-PLCCO with x=0.10 and Tc=27K have revealed that a short-range magnetic order coexists with the superconductivity in the ground state. The formation of a short-range magnetic order due to a tiny amount of excess oxygen in the reduced superconducting samples strongly suggest that the Ce-free and Ce-underdoped T-cuprates are regarded as strongly correlated electron systems.
We performed systematic angle-resolved photoemission spectroscopy measurements $in$-$situ$ on $T$-${rm La}_{2-x}{rm Ce}_xrm {CuO}_{4pmdelta}$ (LCCO) thin films over the extended doping range prepared by the refined ozone/vacuum annealing method. Electron doping level ($n$), estimated from the measured Fermi surface volume, varies from 0.05 to 0.23, which covers the whole superconducting dome. We observed an absence of the insulating behavior around $n sim$ 0.05 and the Fermi surface reconstruction shifted to $n sim$ 0.11 in LCCO compared to that of other electron-doped cuprates at around 0.15, suggesting that antiferromagnetism is strongly suppressed in this material. The possible explanation may lie in the enhanced -$t$ /$t$ in LCCO for the largest $rm{La^{3+}}$ ionic radius among all the Lanthanide elements.
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron-doped T-cuprates, including the reduction annealing, conventional phase diagram and undoped superconductivity. Then, our transport and magnetic results and results relating to the superconducting pairing symmetry of the undoped and underdoped T-cuprates are shown. Collaborating spectroscopic and nuclear magnetic resonance results are also shown briefly. It has been found that, through the reduction annealing, a strongly localized state of carriers accompanied by an antiferromagnetic pseudogap in the as-grown samples changes to a metallic and superconducting state with a short-range magnetic order in the reduced superconducting samples. The formation of the short-range magnetic order due to a very small amount of excess oxygen in the reduced superconducting samples suggests that the T-cuprates exhibiting the undoped superconductivity in the parent compounds are regarded as strongly correlated electron systems, as well as the hole-doped high-Tc cuprates. We show our proposed electronic structure model to understand the undoped superconductivity. Finally, unsolved future issues of the T-cuprates are discussed.
We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using a variational cluster-perturbation theory approach based upon the self-energy-functional theory, the spectral function of the electron-doped two-dimensional Hubbard model is calculated. The model includes the next-nearest neighbor electronic hopping amplitude $t$ and a fixed on-site interaction $U=8t$ at half filling and doping levels ranging from $x=0.077$ to $x=0.20$. Our results support the fact that a comprehensive description of the single-particle spectrum of electron-doped cuprates requires a proper treatment of strong electronic correlations. In contrast to previous weak-coupling approaches, we obtain a consistent description of the ARPES experiments without the need to introduce a doping-dependent on-site interaction $U$.
Charge order has now been observed in several cuprate high-temperature superconductors. We report a resonant inelastic x-ray scattering experiment on the electron-doped cuprate Nd$_{2-x}$Ce$_{x}$CuO$_4$ that demonstrates the existence of dynamic correlations at the charge order wave vector. Upon cooling we observe a softening in the electronic response, which has been predicted to occur for a d-wave charge order in electron-doped cuprates. At low temperatures, the energy range of these excitations coincides with that of the dispersive magnetic modes known as paramagnons. Furthermore, measurements where the polarization of the scattered photon is resolved indicate that the dynamic response at the charge order wave vector primarily involves spin-flip excitations. Overall, our findings indicate a coupling between dynamic magnetic and charge-order correlations in the cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا