No Arabic abstract
In the landscape perspective, our Universe begins with a quantum tunneling from an eternally-inflating parent vacuum, followed by a period of slow-roll inflation. We investigate the tunneling process and calculate the probability distribution for the initial conditions and for the number of e-folds of slow-roll inflation, modeling the landscape by a small-field one-dimensional random Gaussian potential. We find that such a landscape is fully consistent with observations, but the probability for future detection of spatial curvature is rather low, $P sim 10^{-3}$.
We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations $n_s$ and its running $alpha_s$. These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.
We investigate slow-roll inflation in a multi-field random Gaussian landscape. The landscape is assumed to be small-field, with a correlation length much smaller than the Planck scale. Inflation then typically occurs in small patches of the landscape, localized near inflection or saddle points. We find that the inflationary track is typically close to a straight line in the field space, and the statistical properties of inflation are similar to those in a one-dimensional landscape. This picture of multi-field inflation is rather different from that suggested by the Dyson Brownian motion model; we discuss the reasons for this difference. We also discuss tunneling from inflating false vacua to the neighborhood of inflection and saddle points and show that the tunneling endpoints tend to concentrate along the flat direction in the landscape.
Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full non-slow-roll source term for the second order Klein-Gordon equation which is valid on all scales. The numerical results are consistent with the ones obtained previously where slow-roll is a good approximation. We investigate the effect of localised features in the scalar field potential which break slow-roll for some portion of the evolution. The numerical package solving the second order Klein-Gordon equation has been released under an open source license and is available for download.
We study initial conditions for inflation in scenarios where the inflaton potential has a plateau shape. Such models are those most favored by Planck data and can be obtained in a large number of model classes. As a representative example, we consider Higgs inflation with and without an $R^2$ term in the context of Palatini gravity. We show that inflation with a large number of e-folds generically occurs in a large part of the parameter space without any fine-tuning of parameters even when the scale of inflation and the inflaton field value during inflation are much smaller than the Planck scale. We discuss consequences for detection of primordial gravitational waves and spectral tilt of curvature perturbations, as well as the recently proposed Trans-Planckian Censorship conjecture.