No Arabic abstract
Sleep condition is closely related to an individuals health. Poor sleep conditions such as sleep disorder and sleep deprivation affect ones daily performance, and may also cause many chronic diseases. Many efforts have been devoted to monitoring peoples sleep conditions. However, traditional methodologies require sophisticated equipment and consume a significant amount of time. In this paper, we attempt to develop a novel way to predict individuals sleep condition via scrutinizing facial cues as doctors would. Rather than measuring the sleep condition directly, we measure the sleep-deprived fatigue which indirectly reflects the sleep condition. Our method can predict a sleep-deprived fatigue rate based on a selfie provided by a subject. This rate is used to indicate the sleep condition. To gain deeper insights of human sleep conditions, we collected around 100,000 faces from selfies posted on Twitter and Instagram, and identified their age, gender, and race using automatic algorithms. Next, we investigated the sleep condition distributions with respect to age, gender, and race. Our study suggests among the age groups, fatigue percentage of the 0-20 youth and adolescent group is the highest, implying that poor sleep condition is more prevalent in this age group. For gender, the fatigue percentage of females is higher than that of males, implying that more females are suffering from sleep issues than males. Among ethnic groups, the fatigue percentage in Caucasian is the highest followed by Asian and African American.
The complexities of fatigue have drawn much attention from researchers across various disciplines. Short-term fatigue may cause safety issue while driving; thus, dynamic systems were designed to track driver fatigue. Long-term fatigue could lead to chronic syndromes, and eventually affect individuals physical and psychological health. Traditional methodologies of evaluating fatigue not only require sophisticated equipment but also consume enormous time. In this paper, we attempt to develop a novel and efficient method to predict individuals fatigue rate by scrutinizing human facial cues. Our goal is to predict fatigue rate based on a selfie. To associate the fatigue rate with user behaviors, we have collected nearly 1-million timeline posts from 10,480 users on Instagram. We first detect all the faces and identify their demographics using automatic algorithms. Next, we investigate the fatigue distribution by weekday over different age, gender, and ethnic groups. This work represents a promising way to assess sleep-deprived fatigue, and our study provides a viable and efficient computational framework for user fatigue modeling in large-scale via social media.
The COVID-19 pandemic has affected peoples lives around the world on an unprecedented scale. We intend to investigate hoarding behaviors in response to the pandemic using large-scale social media data. First, we collect hoarding-related tweets shortly after the outbreak of the coronavirus. Next, we analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020, and dissect the hoarding-related tweets by age, gender, and geographic location. We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population. Furthermore, using topic modeling, we investigate the opinions expressed towards the hoarding behavior by categorizing these topics according to demographic and geographic groups. We also calculate the anxiety scores for the hoarding and anti-hoarding related tweets using a lexical approach. By comparing their anxiety scores with the baseline Twitter anxiety score, we reveal further insights. The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean. Interestingly, beer has the highest calculated anxiety score compared to other hoarded items mentioned in the tweets.
Shaped by human movement, place connectivity is quantified by the strength of spatial interactions among locations. For decades, spatial scientists have researched place connectivity, applications, and metrics. The growing popularity of social media provides a new data stream where spatial social interaction measures are largely devoid of privacy issues, easily assessable, and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI) based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US county level, exhibits a strong positive association with SafeGraph population movement records (10 percent penetration in the US population) and Facebooks social connectedness index (SCI), a popular connectivity index based on social networks. We found that PCI has a strong boundary effect and that it generally follows the distance decay, although this force is weaker in more urbanized counties with a denser population. Our investigation further suggests that PCI has great potential in addressing real-world problems that require place connectivity knowledge, exemplified with two applications: 1) modeling the spatial spread of COVID-19 during the early stage of the pandemic and 2) modeling hurricane evacuation destination choice. The methodological and contextual knowledge of PCI, together with the launched visualization platform and open-sourced PCI datasets at various geographic levels, are expected to support research fields requiring knowledge in human spatial interactions.
The contagion dynamics can emerge in social networks when repeated activation is allowed. An interesting example of this phenomenon is retweet cascades where users allow to re-share content posted by other people with public accounts. To model this type of behaviour we use a Hawkes self-exciting process. To do it properly though one needs to calibrate model under consideration. The main goal of this paper is to construct moments method of estimation of this model. The key step is based on identifying of a generator of a Hawkes process. We perform numerical analysis on real data as well.
The publics attitudes play a critical role in the acceptance, purchase, use, and research and development of autonomous vehicles (AVs). To date, the publics attitudes towards AVs were mostly estimated through traditional survey data with high labor costs and a low quantity of samples, which also might be one of the reasons why the influencing factors on the publics attitudes of AVs have not been studied from multiple aspects in a comprehensive way yet. To address the issue, this study aims to propose a method by using large-scale social media data to investigate key factors that affect the publics attitudes and acceptance of AVs. A total of 954,151 Twitter data related to AVs and 53 candidate independent variables from seven categories were extracted using the web scraping method. Then, sentiment analysis was used to measure the public attitudes towards AVs by calculating sentiment scores. Random forests algorithm was employed to preliminarily select candidate independent variables according to their importance, while a linear mixed model was performed to explore the impacting factors considering the unobserved heterogeneities caused by the subjectivity level of tweets. The results showed that the overall attitude of the public on AVs was slightly optimistic. Factors like drunk, blind spot, and mobility had the largest impacts on public attitudes. In addition, people were more likely to express positive feelings when talking about words such as lidar and Tesla that relate to high technologies. Conversely, factors such as COVID-19, pedestrian, sleepy, and highway were found to have significantly negative effects on the publics attitudes. The findings of this study are beneficial for the development of AV technologies, the guidelines for AV-related policy formulation, and the publics understanding and acceptance of AVs.