No Arabic abstract
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Hamiltonians), our arguments imply timescales that do not increase with the system size, in contrast to previously known upper bounds. In particular we show that, for such Hamiltonians, the matrix representation of local observables in the energy basis is banded, and that this property is crucial in order to derive equilibration times that are non-negligible in macroscopic systems. Finally, we give an intuitive interpretation to recent theorems on equilibration time-scale.
Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of quantum technologies, however, the effects of many body interactions and their interplay with temperature, different drives and dynamical regimes is still largely unknown. Here we present a systematic study of these interplays: we consider a variety of interaction (from non-interacting to strongly correlated) and dynamical (from sudden quench to quasi-adiabatic) regimes, and draw some general conclusions in relation to work extraction and entropy production. As treatment of many-body interacting systems is highly challenging, we introduce a simple approximation which includes, for the average quantum work, many-body interactions only via the initial state, while the dynamics is fully non-interacting. We demonstrate that this simple approximation is surprisingly good for estimating both the average quantum work and the related entropy variation, even when many-body correlations are significant.
We address the question on how weak perturbations, that are quite ineffective in small many-body systems, can lead to decoherence and hence to irreversibility when they proliferate as the system size increases. This question is at the heart of solid state NMR. There, an initially local polarization spreads all over due to spin-spin interactions that conserve the total spin projection, leading to an equilibration of the polarization. In principle, this quantum dynamics can be reversed by changing the sign of the Hamiltonian. However, the reversal is usually perturbed by non reversible interactions that act as a decoherence source. The fraction of the local excitation recovered defines the Loschmidt echo (LE), here evaluated in a series of closed $N$ spin systems with all-to-all interactions. The most remarkable regime of the LE decay occurs when the perturbation induces proliferated effective interactions. We show that if this perturbation exceeds some lower bound, the decay is ruled by an effective Fermi golden rule (FGR). Such a lower bound shrinks as $ N $ increases, becoming the leading mechanism for LE decay in the thermodynamic limit. Once the polarization stayed equilibrated longer than the FGR time, it remains equilibrated in spite of the reversal procedure.
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in state A or state B?. In quantum mechanics, the latter type of measurements can be studied and optimized using the framework of quantum hypothesis testing. In many cases one can explicitly find the optimal measurement in the limit where one has simultaneous access to a large number $n$ of identical copies of the system, and estimate the expected error as $n$ becomes large. Interestingly, error estimates turn out to involve various quantum information theoretic quantities such as relative entropy, thereby giving these quantities operational meaning. In this paper we consider the application of quantum hypothesis testing to quantum many-body systems and quantum field theory. We review some of the necessary background material, and study in some detail the situation where the two states one wants to distinguish are parametrically close. The relevant error estimates involve quantities such as the variance of relative entropy, for which we prove a new inequality. We explore the optimal measurement strategy for spin chains and two-dimensional conformal field theory, focusing on the task of distinguishing reduced density matrices of subsystems. The optimal strategy turns out to be somewhat cumbersome to implement in practice, and we discuss a possible alternative strategy and the corresponding errors.
Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement alone. Using tools from complexity science, we characterise such structure. We investigate the structural complexities that can be found within the patterns that manifest from the observational data of these systems. In particular, using two prototypical quantum many-body systems as test cases - the one-dimensional quantum Ising and Bose-Hubbard models - we explore how different information-theoretic measures of complexity are able to identify different features of such patterns. This work furthers the understanding of fully-quantum notions of structure and complexity in quantum systems and dynamics.
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamiltonian, we identify a large set of translation-invariant states that can be reversibly converted to and from the thermal state with thermal operations and a small amount of coherence. These are the spatially ergodic states, i.e., states that have sharp statistics for any translation-invariant observable, and mixtures of such states with the same thermodynamic potential. As an intermediate result, we show for a general state that if the min- and the max-relative entropy to the thermal state coincide approximately, this implies the approximately reversible interconvertibility to and from the thermal state with thermal operations and a small source of coherence. Our results provide a strong link between the abstract resource theory of thermodynamics and more realistic physical systems, as we achieve a robust and operational characterization of the emergence of a thermodynamic potential in translation-invariant lattice systems.