Do you want to publish a course? Click here

TRUST I: A 3D externally illuminated slab benchmark for dust radiative transfer

64   0   0.0 ( 0 )
 Added by Karl D. Gordon
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.



rate research

Read More

We present Powderday, a flexible, fast, open-source dust radiative transfer package designed to interface with galaxy formation simulations. Powderday builds on FSPS population synthesis models, Hyperion dust radiative transfer, and employs yt to interface between different software packages. We include our stellar population synthesis modeling on the fly, which allows for significant run-time flexibility in the assumed stellar physics. We include a model for nebular line emission that can employ either precomputed Cloudy lookup tables (for efficiency), or direct photoionization calculations for all young stars (for flexibility). The dust content follows either observationally-motivated prescriptions, direct modeling from galaxy formation simulations, or a novel approach that includes the dust content via learning-based algorithms from the SIMBA cosmological galaxy formation simulation. AGN can additionally be included via a range of prescriptions. The output of these models are broadband SEDs, as well as filter-convolved images. Powderday is designed to eliminate last-mile efforts by researchers that employ different hydrodynamic galaxy formation models, and seamlessly interfaces with GIZMO, AREPO, GASOLINE, CHANGA, and ENZO. We demonstrate the capabilities of the code via three applications: a model for the star formation rate (SFR) - infrared luminosity relation in galaxies (including the impact of AGN); the impact of circumstellar dust around AGB stars on the mid-infrared emission from galaxy SEDs; and the impact of galaxy inclination angle on dust attenuation laws.
Interstellar dust is a key element in our understanding of the interstellar medium and star formation. The manner in which dust populations evolve with the excitation and the physical conditions is a first step in the comprehension of the evolution of inter- stellar dust. Within the framework of the Evolution of interstellar dust Herschel key program, we have acquired PACS and SPIRE spec- trophotometric observations of various photodissociation regions, to characterise this evolution. The aim of this paper is to trace the evolution of dust grains in the Orion Bar photodissociation region. We use Herschel/PACS (70 and 160 mic) and SPIRE (250, 350 and 500 mic) together with Spitzer/IRAC observations to map the spatial distribution of the dust populations across the Bar. Brightness profiles are modelled using the DustEM model coupled with a radiative transfer code. Thanks to Herschel, we are able to probe finely the dust emission of the densest parts of the Orion Bar with a resolution from 5.6 to 35.1. These new observations allow us to infer the temperature of the biggest grains at different positions in the Bar, which reveals a gradient from sim 80 K to 40 K coupled with an increase of the spectral emissivity index from the ionization front to the densest regions. Combining Spitzer/IRAC observations, which are sensitive to the dust emission from the surface, with Herschel maps, we have been able to measure the Orion Bar emission from 3.6 to 500 mic. We find a stratification in the different dust components which can be re- produced quantitatively by a simple radiative transfer model without dust evolution. However including dust evolution is needed to explain the brightness in each band. PAH abundance variations, or a combination of PAH abundance variations with an emissivity enhancement of the biggest grains due to coagulation give good results.
Dust emission, an important diagnostic of star formation and ISM mass throughout the Universe, can be powered by sources unrelated to ongoing star formation. In the framework of the DustPedia project we have set out to disentangle the radiation of the ongoing star formation from that of the older stellar populations. This is done through detailed, 3D radiative transfer simulations of face-on spiral galaxies. In this particular study, we focus on NGC 1068, which contains an active galactic nucleus (AGN). The effect of diffuse dust heating by AGN (beyond the torus) was so far only investigated for quasars. This additional dust heating source further contaminates the broadband fluxes on which classic galaxy modelling tools rely to derive physical properties. We aim to fit a realistic model to the observations of NGC 1068 and quantify the contribution of the several dust heating sources. Our model is able to reproduce the global spectral energy distribution of the galaxy. It matches the resolved optical and infrared images fairly well, but deviates in the UV and the submm. We find a strong wavelength dependency of AGN contamination to the broadband fluxes. It peaks in the MIR, drops in the FIR, but rises again at submm wavelengths. We quantify the contribution of the dust heating sources in each 3D dust cell and find a median value of 83% for the star formation component. The AGN contribution is measurable at the percentage level in the disc, but quickly increases in the inner few 100 pc, peaking above 90%. This is the first time the phenomenon of an AGN heating the diffuse dust beyond its torus is quantified in a nearby star-forming galaxy. NGC 1068 only contains a weak AGN, meaning this effect can be stronger in galaxies with a more luminous AGN. This could significantly impact the derived star formation rates and ISM masses for such systems.
Context: Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered driven merely by young stars and, consequently, often applied to trace the star formation rate in galaxies. Recent studies have argued that the old stellar population might anticipate a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (< 100 Myr) and old (~ 10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with the Monte-Carlo code SKIRT accounting for the absorption, scattering and non-local thermal equilibrium (NLTE) emission of dust in M51. The 3D distribution of stars is derived from the 2D morphology observed in the IRAC 3.6 {mu}m, GALEX FUV, H{alpha} and MIPS 24 {mu}m wavebands, assuming an exponential vertical distribution with an appropriate scale height. The dust geometry is constrained through the far-ultraviolet (FUV) attenuation, which is derived from the observed total-infrared-to-far-ultraviolet luminosity ratio. The stellar luminosity, star formation rate and dust mass have been scaled to reproduce the observed stellar spectral energy distribution (SED), FUV attenuation and infrared SED. (abridged)
We extend to three-dimensional space the approximate M_2 model for the slab geometry studied in our previous paper. The B_2 model therein, as a special case of the second order extended quadrature method of moments (EQMOM), is proved to be globally hyperbolic. The model we proposed here extends EQMOM to multiple dimensions following the idea to approximate the maximum entropy closure for the slab geometry case. Like the M_2 closure, the ansatz of the new model has the capacity to capture both isotropic and beam-like solutions, while the new model has fluxes in closed-form, thus is applicable to practical numerical simulations. The rotational invariance, realizability, and hyperbolicity of the model are studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا