Do you want to publish a course? Click here

Extruded Mg based hybrid composite alloys studied by longitudinal impression creep

100   0   0.0 ( 0 )
 Added by Suhas Kumar
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been examined in the longitudinal direction, i.e., the plane containing random fibre orientation was parallel to the loading direction, in the temperature range of 175-300 C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. At 175 C, normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at all the stresses employed. At 240 C, normal creep behaviour is observed up to 80 MPa and reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and again decreasing, is observed above that stress. At 300 C, reverse creep behaviour is observed at all the stresses employed. This pattern remains the same for all the composites. The reverse creep behaviour is found to be associated with the fibre breakage. The stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the stress exponent varies from 3.9 to 7.0, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Qc was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres at all the temperatures and stress levels investigated.



rate research

Read More

122 - Yuhan Li , Faxiang Qin , Le Quan 2019
Interface constitutes a significant volume fraction in nanocomposites, and it requires the ability to tune and tailor interfaces to tap the full potential of nanocomposites. However, the development and optimization of nanocomposites is currently restricted by the limited exploration and utilization of interfaces at different length scales. In this research, we have designed and introduced a relatively large-scale vertical interphase into carbon nanocomposites, in which the dielectric response and dispersion features in microwave frequency range are successfully adjusted. A remarkable relaxation process has been observed in vertical-interphase nanocomposites, showing sensitivity to both filler loading and the discrepancy in polarization ability across the interphase. Together with our analyses on dielectric spectra and relaxation processes, it is suggested that the intrinsic effect of vertical interphase lies in its ability to constrain and localize heterogeneous charges under external fields. Following this logic, systematic research is presented in this article affording to realize tunable frequency-dependent dielectric functionality by means of vertical interphase engineering. Overall, this study provides a novel method to utilize interfacial effects rationally. The research approach demonstrated here has great potential in developing microwave dielectric nanocomposites and devices with targeted or unique performance such as tunable broadband absorbers.
Macroscopic ensembles of nanocarbons, such as fibres of carbon nanotubes (CNT), are characterised by a complex hierarchical structure combining coherent crystalline regions with a large porosity arising from imperfect packing of the large rigid building blocks. Such structure is at the centre of a wide range of charge storage and transfer processes when CNT fibres are used as electrodes and/or current collectors. This work introduces a method based on wide and small-angle X-ray scattering (WAXS/SAXS) to obtain structural descriptors of CNT fibres and which enables in situ characterisation during electrochemical processes. It enables accurate determination of parameters such as specific surface area, average pore size and average bundle size from SAXS data after correction for scattering from density fluctuations arising from imperfect packing of graphitic planes. In situ and ex situ WAXS/SAXS measurements during electrochemical swelling of CNT fibre electrodes in ionic liquid provide continuous monitoring of the increase in effective surface area caused by electrostatic separation of CNT bundles in remarkable agreement with capacitance changes measured independently. Relative contributions from quantum and Helmholtz capacitance to total capacitance remaining fairly constant. The WAXS/SAXS analysis is demonstrated for fibres of either multi- and single-walled CNTs, and is expected to be generally applicable to operando studies on nanocarbon-based electrodes used in batteries, actuators and other applications
Polymeric membranes, including Polysulfone (PSf) membranes, are routinely used for water treatment. It is known for quite some time that water permeability of above membranes can be improved if one incorporates carbon nanotubes (single-walled, SWCNTs or multi-walled, MWCNTs) in to the membrane and aligns them in direction of flow of water. This paper reports a method of synthesizing polymeric membranes having vertically aligned hollow CNTs embedded in them. This involves mixing of nanomagnetic particles in the dope solution and casting of membrane in presence of moderate magnetic fields. A semi-automatic membrane casting machine which allows casting of membrane in presence magnetic field was designed and fabricated. PSf nanocomposite membranes, having vertically aligned MWCNTSs, were synthesized using above machine. The effect of magnetic field and the exposure time on the water permeation of above membranes was studied. It was seen that water permeability of membrane increases by a factor of 4 when the magnetic field is increased from 0 to 1500 Gauss. There was additional 40% increase in water permeability, when the time for which film was exposed to magnetic field was increased from 5 sec. to 10 sec.
The effect of Ca and Zn in solid solution on the critical resolved shear stress (CRSS) of <a> basal slip, tensile twinning and <c+a> pyramidal slip in Mg alloys has been measured through compression tests on single crystal micropillars with different orientations. The solute atoms increased the CRSS for basal slip to ~ 13.5 MPa, while the CRSS for pyramidal slip was lower than 85 MPa, reducing significantly the plastic anisotropy in comparison with pure Mg. Moreover, the CRSSs for twin nucleation and growth were very similar (~ 37 MPa) and the large value of the CRSS for twin growth hindered the growth of twins during thermo-mechanical processing. Finally, evidence of <a> prismatic slip and cross-slip between basal and prismatic dislocations was found. It is concluded that the reduction of plastic anisotropy, the activation of different slip systems and cross-slip and the weak basal texture promoted by the large CRSS for twin growth are responsible for the improved ductility and formability of Mg-Ca-Zn alloys.
In this work, amorphous thin films in Mg-Si-O-N system were prepared in order to investigate the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N2 and O2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا