Do you want to publish a course? Click here

On the growth of a superlinear preferential attachment scheme

80   0   0.0 ( 0 )
 Added by Sunder Sethuraman
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider an evolving preferential attachment random graph model where at discrete times a new node is attached to an old node, selected with probability proportional to a superlinear function of its degree. For such schemes, it is known that the graph evolution condenses, that is a.s. in the limit graph there will be a single random node with infinite degree, while all others have finite degree. In this note, we establish a.s. law of large numbers type limits and fluctuation results, as $nuparrowinfty$, for the counts of the number of nodes with degree $kgeq 1$ at time $ngeq 1$. These limits rigorously verify and extend a physical picture of Krapivisky, Redner and Leyvraz (2000) on how the condensation arises with respect to the degree distribution.



rate research

Read More

In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
We introduce a model of a preferential attachment based random graph which extends the family of models in which condensation phenomena can occur. Each vertex has an associated uniform random variable which we call its location. Our model evolves in discrete time by selecting $r$ vertices from the graph with replacement, with probabilities proportional to their degrees plus a constant $alpha$. A new vertex joins the network and attaches to one of these vertices according to a given probability associated to the ranking of their locations. We give conditions for the occurrence of condensation, showing the existence of phase transitions in $alpha$ below which condensation occurs. The condensation in our model differs from that in preferential attachment models with fitness in that the condensation can occur at a random location, that it can be due to a persistent hub, and that there can be more than one point of condensation.
We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.
We consider the preferential attachment model with multiple vertex types introduced by Antunovic, Mossel and Racz. We give an example with three types, based on the game of rock-paper-scissors, where the proportions of vertices of the different types almost surely do not converge to a limit, giving a counterexample to a conjecture of Antunovic, Mossel and Racz. We also consider another family of examples where we show that the conjecture does hold.
We characterize the tail behavior of the distribution of the PageRank of a uniformly chosen vertex in a directed preferential attachment graph and show that it decays as a power law with an explicit exponent that is described in terms of the model parameters. Interestingly, this power law is heavier than the tail of the limiting in-degree distribution, which goes against the commonly accepted {em power law hypothesis}. This deviation from the power law hypothesis points at the structural differences between the inbound neighborhoods of typical vertices in a preferential attachment graph versus those in static random graph models where the power law hypothesis has been proven to hold (e.g., directed configuration models and inhomogeneous random digraphs). In addition to characterizing the PageRank distribution of a typical vertex, we also characterize the explicit growth rate of the PageRank of the oldest vertex as the network size grows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا