Do you want to publish a course? Click here

A Fresh Approach to Forecasting in Astroparticle Physics and Dark Matter Searches

74   0   0.0 ( 0 )
 Added by Thomas Edwards
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a toolbox of new techniques and concepts for the efficient forecasting of experimental sensitivities. These are applicable to a large range of scenarios in (astro-)particle physics, and based on the Fisher information formalism. Fisher information provides an answer to the question what is the maximum extractable information from a given observation?. It is a common tool for the forecasting of experimental sensitivities in many branches of science, but rarely used in astroparticle physics or searches for particle dark matter. After briefly reviewing the Fisher information matrix of general Poisson likelihoods, we propose very compact expressions for estimating expected exclusion and discovery limits (equivalent counts method). We demonstrate by comparison with Monte Carlo results that they remain surprisingly accurate even deep in the Poisson regime. We show how correlated background systematics can be efficiently accounted for by a treatment based on Gaussian random fields. Finally, we introduce the novel concept of Fisher information flux. It can be thought of as a generalization of the commonly used signal-to-noise ratio, while accounting for the non-local properties and saturation effects of background and instrumental uncertainties. It is a powerful and flexible tool ready to be used as core concept for informed strategy development in astroparticle physics and searches for particle dark matter.



rate research

Read More

The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.
109 - U.F. Katz 2019
Cherenkov light induced by fast charged particles in transparent dielectric media such as air or water is exploited by a variety of experimental techniques to detect and measure extraterrestrial particles impinging on Earth. A selection of detection principles is discussed and corresponding experiments are presented together with breakthrough-results they achieved. Some future developments are highlighted.
The open science framework defined in the German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI) has triggered educational and outreach activities at the Irkutsk State University (ISU), which is actively participated in the two major astroparticle facilities in the region: TAIGA observatory and Baikal-GVD neutrino telescope. We describe the ideas grew out of this unique environment and propose a new open science laboratory based on education and outreach as well as on the development and testing new methods and techniques for the multimessenger astronomy.
186 - Laura Baudis 2014
Cosmological observations and the dynamics of the Milky Way provide ample evidence for an invisible and dominant mass component. This so-called dark matter could be made of new, colour and charge neutral particles, which were non-relativistic when they decoupled from ordinary matter in the early universe. Such weakly interacting massive particles (WIMPs) are predicted to have a non-zero coupling to baryons and could be detected via their collisions with atomic nuclei in ultra-low background, deep underground detectors. Among these, detectors based on liquefied noble gases have demonstrated tremendous discovery potential over the last decade. After briefly introducing the phenomenology of direct dark matter detection, I will review the main properties of liquefied argon and xenon as WIMP targets and discuss sources of background. I will then describe existing and planned argon and xenon detectors that employ the so-called single- and dual-phase detection techniques, addressing their complementarity and science reach.
One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا