Do you want to publish a course? Click here

On the equivalence of Eulerian and Lagrangian variables for the two-component Camassa-Holm system

85   0   0.0 ( 0 )
 Added by Helge Holden
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The Camassa-Holm equation and its two-component Camassa-Holm system generalization both experience wave breaking in finite time. To analyze this, and to obtain solutions past wave breaking, it is common to reformulate the original equation given in Eulerian coordinates, into a system of ordinary differential equations in Lagrangian coordinates. It is of considerable interest to study the stability of solutions and how this is manifested in Eulerian and Lagrangian variables. We identify criteria of convergence, such that convergence in Eulerian coordinates is equivalent to convergence in Lagrangian coordinates. In addition, we show how one can approximate global conservative solutions of the scalar Camassa-Holm equation by smooth solutions of the two-component Camassa-Holm system that do not experience wave breaking.



rate research

Read More

Compared with the two-component Camassa-Holm system, the modified two-component Camassa-Holm system introduces a regularized density which makes possible the existence of solutions of lower regularity, and in particular of multipeakon solutions. In this paper, we derive a new pointwise invariant for the modified two-component Camassa-Holm system. The derivation of the invariant uses directly the symmetry of the system, following the classical argument of Noethers theorem. The existence of the multipeakon solutions can be directly inferred from this pointwise invariant. This derivation shows the strong connection between symmetries and the existence of special solutions. The observation also holds for the scalar Camassa-Holm equation and, for comparison, we have also included the corresponding derivation. Finally, we compute explicitly the solutions obtained for the peakon-antipeakon case. We observe the existence of a periodic solution which has not been reported in the literature previously. This case shows the attractive effect that the introduction of an elastic potential can have on the solutions.
We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa-Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa-Holm system in Lagrangian variables is completely integrable as well.
The Camassa-Holm equation (CH) is a well known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow dependence on average density as well as pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially-confined initial data. Numerical results for MCH2 are given and compared with the pure CH2 case. These numerics show that the modification in MCH2 to introduce average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for MCH2 shows a new asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, MCH2 also allows the phase shift of the peakon collision to diverge in certain parameter regimes.
We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutions of the $n$th equation of the stationary CH-2 hierarchy as the real $n$-dimensional torus $mathbb{T}^n$. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint singular Hamiltonian systems. In particular, we employ Weyl-Titchmarsh theory for singular (canonical) Hamiltonian systems. While we focus primarily on the case of stationary algebro-geometric CH-2 solutions, we note that the time-dependent case subordinates to the stationary one with respect to isospectral torus questions.
In this paper, we study orbital stability of peakons for the generalized modified Camassa-Holm (gmCH) equation, which is a natural higher-order generalization of the modified Camassa-Holm (mCH) equation, and admits Hamiltonian form and single peakons. We first show that the single peakon is the usual weak solution of the PDEs. Some sign invariant properties and conserved densities are presented. Next, by constructing the corresponding auxiliary function $h(t,,x)$ and establishing a delicate polynomial inequality relating to the two conserved densities with the maximal value of approximate solutions, the orbital stability of single peakon of the gmCH equation is verified. We introduce a new approach to prove the key inequality, which is different from that used for the mCH equation. This extends the result on the stability of peakons for the mCH equation (Comm. Math. Phys., 322:967-997, 2013) successfully to the higher-order case, and is helpful to understand how higher-order nonlinearities affect the dispersion dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا