Do you want to publish a course? Click here

Possible topologically non-trivial superconducting order parameter in type-II Weyl semimetal T_d-MoTe_2

87   0   0.0 ( 0 )
 Added by Zurab Guguchia
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

MoTe_2, with the orthorhombic T_d phase, is a new type (type-II) of Weyl semimetal, where the Weyl Fermions emerge at the boundary between electron and hole pockets. Non-saturating magnetoresistance (MR), and superconductivity were also observed in T_d-MoTe_2. Understanding the superconductivity in T_d-MoTe_2, which was proposed to be topologically non-trivial, is of eminent interest. Here, we report high-pressure (p_max = 1.3 GPa) muon spin rotation experiments on the temperature-dependent magnetic penetration depth in T_d-MoTe_2. A substantial increase of the superfluid density n_s/m^* and a linear scaling with T_c is observed under pressure. Moreover, the superconducting order parameter in T_d-MoTe_2 is determined to be two gap (s+s)-wave symmetric. We also excluded time reversal symmetry breaking in the SC state with sensitive zero-field ${mu}$SR experiments. Considering the previous report cite{Balicas1} on the strong suppression of T_c in T_d-MoTe_2 by disorder, we suggest that s^{+-} (topological order parameter) state is more likely to be realized in MoTe_2 than the s^{++} (trivial) state. Should s^{+-} be the SC gap symmetry, the T_d-MoTe_2 is, to our knowledge, the first known example of a time reversal invariant topological (Weyl) superconductor.



rate research

Read More

We report the pressure (p_max = 1.5 GPa) evolution of the crystal structure of the Weyl semimetal T_d-MoTe_2 by means of neutron diffraction experiments. We find that the fundamental non-centrosymmetric structure T_d is fully suppressed and transforms into a centrosymmertic 1T structure at a critical pressure of p_cr = 1.2 GPa. This is strong evidence for a pressure induced quantum phase transition (QPT) between topological to a trivial electronic state. Although the topological QPT has strong effect on magnetoresistance, it is interesting that the superconducting critical temperature T_c, the superfluid density, and the SC gap all change smoothly and continuously across p_cr and no sudden effects are seen concomitantly with the suppression of the T_d structure. This implies that the T_c, and thus the SC pairing strength, is unaffected by the topological QPT. However, the QPT requires the change in the SC gap symmetry from non-trivial s+- to a trivial s++ state, which we discuss in this work. Our systematic characterizations of the structure and superconducting properties associated with the topological QPT provide deep insight into the pressure induced phase diagram in this topological quantum material.
96 - F. Y. Bruno , A. Tamai , Q. S. Wu 2016
We report angle-resolved photoemission experiments resolving the distinct electronic structure of the inequivalent top and bottom (001) surfaces of WTe2. On both surfaces, we identify a surface state that forms a large Fermi-arc emerging out of the bulk electron pocket. Using surface electronic structure calculations, we show that these Fermi arcs are topologically trivial and that their existence is independent of the presence of type-II Weyl points in the bulk band structure. This implies that the observation of surface Fermi arcs alone does not allow the identification of WTe2 as a topological Weyl semimetal. We further use the identification of the two different surfaces to clarify the number of Fermi surface sheets in WTe2.
121 - V. Nagpal , K. S. Jat , S. Patnaik 2021
Topological materials with extremely large magnetoresistance exhibit a prognostic feature of resistivity turn-on behaviour. This occurs when the temperature dependence of resistivity changes from metallic to semiconducting characteristics on application of external magnetic field above a threshold value. Here, we study the magneto-transport properties of type-II Weyl Semimetal WP2. We find that semi-classical theories of magnetoresistance are consistent with our data without the need to invoke topological surface states. Our findings in this work provides an alternative basis to understand the temperature dependence of magnetoresistance in topological materials.
119 - Xun Jia , Maoyuan Wang , Dayu Yan 2020
In many realistic topological materials, more than one kind of fermions contribute to the electronic bands crossing the Fermi level, leading to various novel phenomena. Here, using momentum-resolved inelastic electron scattering, we investigate the plasmons and their evolution across the phase transition in a type-II Weyl Semimetal MoTe$_2$, in which both Weyl fermions and trivial nonrelativistic fermions contribute to the Fermi surface in the Td phase. One plasmon mode in the 1T phase at high temperature and two plasmon modes in the topological T$_d$ phase at low temperature are observed. Combining with first-priciples calculations, we show that all the plasmon modes are dominated by the interband correlations between the inverted bands of MoTe$_2$. Especially in the T$_d$ phase, since the electronic bands split due to inversion symmetry breaking and spin-orbit coupling, the plasmon modes manifest the interband correlation between the topological Weyl fermions and the trivial nonrelativistic electrons. Our work emphasizes the significance of the interplay between different kinds of carriers in plasmons of topological materials.
Quantum topological materials, exemplified by topological insulators, three-dimensional Dirac semimetals and Weyl semimetals, have attracted much attention recently because of their unique electronic structure and physical properties. Very lately it is proposed that the three-dimensional Weyl semimetals can be further classified into two types. In the type I Weyl semimetals, a topologically protected linear crossing of two bands, i.e., a Weyl point, occurs at the Fermi level resulting in a point-like Fermi surface. In the type II Weyl semimetals, the Weyl point emerges from a contact of an electron and a hole pocket at the boundary resulting in a highly tilted Weyl cone. In type II Weyl semimetals, the Lorentz invariance is violated and a fundamentally new kind of Weyl Fermions is produced that leads to new physical properties. WTe2 is interesting because it exhibits anomalously large magnetoresistance. It has ignited a new excitement because it is proposed to be the first candidate of realizing type II Weyl Fermions. Here we report our angle-resolved photoemission (ARPES) evidence on identifying the type II Weyl Fermion state in WTe2. By utilizing our latest generation laser-based ARPES system with superior energy and momentum resolutions, we have revealed a full picture on the electronic structure of WTe2. Clear surface state has been identified and its connection with the bulk electronic states in the momentum and energy space shows a good agreement with the calculated band structures with the type II Weyl states. Our results provide spectroscopic evidence on the observation of type II Weyl states in WTe2. It has laid a foundation for further exploration of novel phenomena and physical properties in the type II Weyl semimetals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا