The role of band filling in tuning the high field phases of URu2Si2


Abstract in English

We present a detailed study of the low temperature and high magnetic field phases in the chemical substitution series URu$_2$Si$_{2-x}$P$_x$ using electrical transport and magnetization in pulsed magnetic fields up to 65T. Within the hidden order region (0 $ x$$ $ 0.035) the high field ordering is robust even as the hidden order temperature is suppressed. Earlier work shows that for 0.035 $ x$ $ $ 0.26 there is a Kondo lattice with a no-ordered state that is replaced by antiferromagnetism for 0.26 $ x$ 0.5. We observe a simplified continuation of the high field ordering in the no-order $x$-region and an enhancement of the high field state upon the destruction of the antiferromagnetism with magnetic field. These results closely resemble what is seen for URu$_{2-x}$Rh$_x$Si$_2$footnote{The concentration in this paper is defined as URu$_{2-x}$Rh$_x$Si$_2$ while the chemical formula in the literature is given as U(Ru$_{1-x}$Rh$_x$)$_2$Si$_2$ [24-26]}, from which we infer that charge tuning uniformly controls the ground state of URu$_2$Si$_2$, regardless of whether s/p or d-electrons are replaced. This provides guidance for determining the specific factors that lead to hidden order versus magnetism in this family of materials.

Download