Weyl and nodal ring magnons in three-dimensional honeycomb lattices


Abstract in English

We study the topological properties of magnon excitations in a wide class of three dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in the momentum space. The rings can be gapped by Dzyaloshinskii-Moriya (DM) interactions to form two Weyl points with opposite charges. We explicitly discuss these physics in the simplest 3D honeycomb lattice, the hyperhoneycomb lattice and show drumhead and arc surface states in the nodal ring and Weyl phases, respectively, due to the bulk-boundary correspondence.

Download