Do you want to publish a course? Click here

Experimental verification of the very strong coupling regime in a GaAs quantum well microcavity

323   0   0.0 ( 0 )
 Added by Christian Schneider
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

When the coupling between light and matter becomes comparable to the energy gap between different excited states they hybridize, leading to the appearance of a rich and complex phenomenology which attracted remarkable interest in recent years. While the mixing between states with different number of excitations, so-called ultrastrong coupling regime, has been observed in various implementations, the effect of the hybridization between different single excitation states, referred to as very strong coupling regime, has remained elusive. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wavefunctions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity with 28 GaAs quantum wells, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This manifests in a diamagnetic shift around zero detuning that exceeds the shift of the lower polariton by one order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of two. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode which suggests more tightly bound electron-hole pairs than in the bare quantum well.



rate research

Read More

The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits coupled to resonators. Recently there has been renewed interest in studying the quantum strong-coupling (QSC) regime, where states with photon number greater than one are excited. This regime has been recently achieved in semiconductor nanostructures, where a quantum dot is trapped in a planar microcavity. Here we study the quantum strong-coupling regime by calculating its photoluminescence (PL) properties under a pulsed excitation. We discuss the changes in the PL as the QSC regime is reached, which transitions between a peak around the cavity resonance to a doublet. We particularly examine the variations of the PL in the time domain, under regimes of short and long pulse times relative to the microcavity decay time.
Condensation of bosons into a macroscopic quantum state belongs to the most intriguing phenomena in nature. It was first realized in quantum gases of ultra-cold atoms, but more recently became accessible in open-dissipative, exciton-based solid-state systems at elevated temperatures. Semiconducting monolayer crystals have emerged as a new platform for studies of strongly bound excitons in ultimately thin materials. Here, we demonstrate the formation of a bosonic condensate driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling, giving rise to hybrid exciton-polariton modes composed of a Tamm-plasmon resonance, GaAs quantum well excitons and two-dimensional excitons confined in a monolayer of MoSe2. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode at injection powers as low as 4.8 pJ/pulse, as well as its density-dependent blueshift and a dramatic collapse of the emission linewidth as a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint of the core property of monolayer excitons subject to spin-valley locking. The observed effects clearly underpin the perspective of building novel highly non-linear valleytronic devices based on light-matter fluids, coherent bosonic light sources based on atomically thin materials, and paves the way towards studying materials with unconventional topological properties in the framework of bosonic condensation.
291 - H. Tajima , R. Hanai , 2015
We theoretically investigate the uniform spin susceptibility $chi$ in the superfluid phase of an ultracold Fermi gas in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region. In our previous paper [H. Tajima, {it et. al.}, Phys. Rev. A {bf 89}, 033617 (2014)], including pairing fluctuations within an extended $T$-matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where $chi$ is anomalously suppressed even in the normal state near the superfluid phase transition temperature $T_{rm c}$. In this paper, we extend this work to the superfluid phase below $T_{rm c}$, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA $chi$ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below $T_{rm c}$ in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a $^6$Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.
In order to achieve polariton lasing at room temperature, a new fabrication methodology for planar microcavities is proposed: a ZnO-based microcavity in which the active region is epitaxially grown on an AlGaN/AlN/Si substrate and in which two dielectric mirrors are used. This approach allows as to simultaneously obtain a high-quality active layer together with a high photonic confinement as demonstrated through macro-, and micro-photoluminescence ({mu}-PL) and reflectivity experiments. A quality factor of 675 and a maximum PL emission at k=0 are evidenced thanks to {mu}-PL, revealing an efficient polaritonic relaxation even at low excitation power.
Polariton emission from optical cavities integrated with various luminophores has been extensively studied recently due to the wide variety of possible applications in photonics, particularly promising in terms of fabrication of low-threshold sources of coherent emission. Tuneable microcavities allow extensive investigation of the photophysical properties of matter placed inside the cavity by deterministically changing the coupling strength and controllable switching from weak to strong and ultra-strong coupling regimes. Here we demonstrate room temperature strong coupling of exciton transitions in CdSe/ZnS/CdS/ZnS colloidal quantum dots with the optical modes of a tuneable low-mode-volume microcavity. Strong coupling is evidenced by a large Rabi splitting of the photoluminescence spectra depending on the detuning of the microcavity. A coupling strength of 154 meV has been achieved. High quantum yields, excellent photostability, and scalability of fabrication of QDs paves the way to practical applications of coupled systems based on colloidal QDs in photonics, optoelectronics, and sensing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا