Reverse Cholesky factorization and tensor products of nest algebras


Abstract in English

We prove that every positive semidefinite matrix over the natural numbers that is eventually 0 in each row and column can be factored as the product of an upper triangular matrix times a lower triangular matrix. We also extend some known results about factorization with respect to tensor products of nest algebras. Our proofs use the theory of reproducing kernel Hilbert spaces.

Download