No Arabic abstract
We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck (iv) the regularization of zero-range pairing forces (v) the calculation of localization functions (vi)MPI interface for large-scale mass table calculations.
We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb energy of each fragment, (v) the new version 200d of the code HFBTHO, together with an enhanced interface between HFBTHO and HFODD, (vi) parallel capabilities, significantly extended by adding several restart options for large-scale jobs, (vii) the Lipkin translational energy correction method with pairing, (viii) higher-order Lipkin particle-number corrections, (ix) interface to a program plotting single-particle energies or Routhians, (x) strong-force isospin-symmetry-breaking terms, and (xi) the Augmented Lagrangian Method for calculations with 3D constraints on angular momentum and isospin. Finally, an important bug related to the calculation of the entropy at finite temperature and several other little significant errors of the previous published version were corrected.
We describe the first version (v1.00) of the code HFBRAD which solves the Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov equations in the coordinate representation within the spherical symmetry. A realistic representation of the quasiparticle wave functions on the space lattice allows for performing calculations up to the particle drip lines. Zero-range density-dependent interactions are used in the pairing channel. The pairing energy is calculated by either using a cut-off energy in the quasiparticle spectrum or the regularization scheme proposed by A. Bulgac and Y. Yu.
We describe the new version (v3.06h) of the code HFODD that solves the universal nonrelativistic nuclear DFT Hartree-Fock or Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we implemented the following new features: (i) zero-range three- and four-body central terms, (ii) zero-range three-body gradient terms, (iii) zero-range tensor terms, (iv) zero-range isospin-breaking terms, (v) finite-range higher-order regularized terms, (vi) finite-range separable terms, (vii) zero-range two-body pairing terms, (viii) multi-quasiparticle blocking, (ix) Pfaffian overlaps, (x) particle-number and parity symmetry restoration, (xi) axialization, (xii) Wigner functions, (xiii) choice of the harmonic-oscillator basis, (xiv) fixed Omega partitions, (xv) consistency formula between energy and fields, and we corrected several errors of the previo
The properties of $Xi^-$ hypernuclei are studied systematically using a two-dimensional Skyrme-Hartree-Fock approach combined with three different $Xi N$ Skyrme forces fitted to reproduce the existing data. We explore the impurity effect of a single $Xi^-$ hyperon on the radii, deformations, and density distributions of the nuclear core and point out qualitative differences between the different forces. We find that the $Xi^-$ removal energy of $^{hskip0.10em13}_{Xi p}$B [$^{12}$C(g.s.)+ $Xi^-$(1p)] calculated by the SLX3 force is 0.7 MeV, which is in good agreement with a possible value of $0.82pm0.17;$MeV from the KEK E176 experiment. The theoretical prediction for this weakly bound state depends strongly on the deformation of the nuclear core, which is analyzed in detail.
Fission-related phenomena of heavy $Lambda$ hypernuclei are discussed with the constraint Skyrme-Hartree-Fock+BCS (SHF+BCS) method, in which a similar Skyrme-type interaction is employed also for the interaction between a $Lambda$ particle and a nucleon. Assuming that the $Lambda$ particle adiabatically follows the fission motion, we discuss the fission barrier height of $^{239}_{Lambda}$U. We find that the fission barrier height increases slightly when the $Lambda$ particle occupies the lowest level. In this case, the $Lambda$ particle is always attached to the heavier fission fragment. This indicates that one may produce heavy neutron-rich $Lambda$ hypernuclei through fission, whose weak decay is helpful for the nuclear transmutation of long-lived fission products. We also discuss cases where the $Lambda$ particle occupies a higher single-particle level.