Do you want to publish a course? Click here

Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities

107   0   0.0 ( 0 )
 Added by Daniel Hickstein
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using aluminum-nitride photonic-chip waveguides, we generate optical-frequency-comb supercontinuum spanning from 500 nm to 4000 nm with a 0.8 nJ seed pulse, and show that the spectrum can be tailored by changing the waveguide geometry. Since aluminum nitride exhibits both quadratic and cubic nonlinearities, the spectra feature simultaneous contributions from numerous nonlinear mechanisms: supercontinuum generation, difference-frequency generation, second-harmonic generation, and third-harmonic generation. As one application of integrating multiple nonlinear processes, we measure and stabilize the carrier-envelope-offset frequency of a laser comb by direct photodetection of the output light. Additionally, we generate ~0.3 mW in the 3000 nm to 4000 nm region, which is potentially useful for molecular spectroscopy. The combination of broadband light generation from the visible through the mid-infrared, combined with simplified self-referencing, provides a path towards robust comb systems for spectroscopy and metrology in the field.



rate research

Read More

Mid-infrared laser frequency combs are compelling sources for precise and sensitive metrology with applications in molecular spectroscopy and spectro-imaging. The infrared atmospheric window between 3-5.5 $mu$m in particular provides vital information regarding molecular composition. Using a robust, fiber-optic source of few-cycle pulses in the near-infrared, we experimentally demonstrate ultra-broad bandwidth nonlinear phenomena including harmonic and difference frequency generation in a single pass through periodically poled lithium niobate (PPLN). These $chi^{(2)}$ nonlinear optical processes result in the generation of frequency combs across the mid-infrared atmospheric window which we employ for dual-comb spectroscopy of acetone and carbonyl sulfide with resolution as high as 0.003 cm$^{-1}$. Moreover, cascaded $chi^{(2)}$ nonlinearities in the same PPLN directly provide the carrier-envelope offset frequency of the near-infrared driving pulse train in a compact geometry.
Thin-film lithium niobate (TFLN) is superior for integrated nanophotonics due to its outstanding properties in nearly all aspects: strong second-order nonlinearity, fast and efficient electro-optic effects, wide transparency window, and little two photon absorption and free carrier scattering. Together, they permit highly integrated nanophotonic circuits capable of complex photonic processing by incorporating disparate elements on the same chip. Yet, there has to be a demonstration that synergizes those superior properties for system advantage. Here we demonstrate such a chip that capitalizes on TFLNs favorable ferroelectricity, high second-order nonlinearity, and strong electro-optic effects. It consists of a monolithic circuit integrating a Z-cut, quasi-phase matched microring with high quality factor and a phase modulator used in active feedback control. By Pound-Drever-Hall locking, it realizes stable frequency doubling at about 50% conversion with only milliwatt pump, marking the highest by far among all nanophotonic platforms with milliwatt pumping. Our demonstration addresses a long-outstanding challenge facing cavity-based optical processing, including frequency conversion, frequency comb generation, and all-optical switching, whose stable performance is hindered by photorefractive or thermal effects. Our results further establish TFLN as an excellent material capable of optical multitasking, as desirable to build multi-functional chip devices.
On-chip ultraviolet to infrared (UV-IR) spectrum frequency metrology is of crucial importance as a characterization tool for fundamental studies on quantum physics, chemistry, and biology. Due to the strong material dispersion, traditional techniques fail to demonstrate the device that can be applied to generate coherent broadband spectrum that covers the full UV-IR wavelengths. In this work, we explore several novel techniques for supercontinuum generation covering near-UV to near-IR spectrum using AlN micro-photonic waveguides, which is essential for frequency metrology applications: First, to create anomalous dispersion, high order mode (TE10) was adopted, together with its carefully designed high efficiency excitation strategies. Second, the spectrum was broadened by soliton fission through third order dispersion and second harmonic generation, by which directional energy transfer from near-IR to near-UV can be obtained. Finally, high quality single crystalline AlN material was used to provide broadband transparency from UV to IR. Under decently low pulse energy of 0.36 nJ, the experimental spectrum from supercontinuum generation covers from 490 nm to over 1100 nm, with a second harmonic generation band covering from 405 nm to 425 nm. This work paves the way towards UV-IR full spectrum on-chip frequency metrology applications.
A broadband visible blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser, are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum frequency transfer of the near-infrared supercontinuum into the visible wavelength range covering more than 250 THz from below 400 nm to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the visible wavelength band and can find application in astronomical spectrograph calibration as well as referencing of continuous-wave lasers.
The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit instantaneous optical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can in fact be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles, due to enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.7 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا