Ordered phases in coupled nonequilibrium systems: dynamic properties


Abstract in English

We study the dynamical properties of the ordered phases obtained in a coupled nonequilibrium system describing advection of two species of particles by a stochastically evolving landscape. The local dynamics of the landscape also gets affected by the particles. In a companion paper we have presented static properties of different phases that arise as the two-way coupling parameters are varied. In this paper we discuss the dynamics. We show that in the ordered phases macroscopic particle clusters move over an ergodic time-scale growing exponentially with system size but the ordered landscape shows dynamics over a faster time-scale growing as a power of system size. We present a scaling ansatz that describes several dynamical correlation functions of the landscape measured in steady state.

Download