No Arabic abstract
We propose a quantum simulation of the quantum Rabi model in an atomic quantum dot, which is a single atom in a tight optical trap coupled to the quasiparticle modes of a superfluid Bose-Einstein condensate. This widely tunable setup allows to simulate the ultrastrong coupling regime of light-matter interaction in a system which enjoys an amenable characteristic timescale, paving the way for an experimental analysis of the transition between the Jaynes-Cummings and the quantum Rabi dynamics using cold-atom systems. Our scheme can be naturally extended to simulate multi-qubit quantum Rabi models. In particular, we discuss the appearance of effective two-qubit interactions due to phononic exchange, among other features.
We propose a realistic scheme to implement discrete-time quantum walks in the Brillouin zone (i.e., in quasimomentum space) with a spinor Bose-Einstein condensate. Relying on a static optical lattice to suppress tunneling in real space, the condensate is displaced in quasimomentum space in discrete steps conditioned upon the internal state of the atoms, while short pulses periodically couple the internal states. We show that tunable twisted boundary conditions can be implemented in a fully natural way by exploiting the periodicity of the Brillouin zone. The proposed setup does not suffer from off-resonant scattering of photons and could allow a robust implementation of quantum walks with several tens of steps at least. In addition, onsite atom-atom interactions can be used to simulate interactions with infinitely long range in the Brillouin zone.
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.
We propose a straightforward implementation of the phenomenon of diffractive focusing with uniform atomic Bose-Einstein condensates. Both, analytical as well as numerical methods not only illustrate the influence of the atom-atom interaction on the focusing factor and the focus time, but also allow us to derive the optimal conditions for observing focusing of this type in the case of interacting matter waves.