Do you want to publish a course? Click here

Measurement of 1323 and 1487 keV resonances in 15N({alpha}, {gamma})19F with the recoil separator ERNA

62   0   0.0 ( 0 )
 Added by Antonino Di Leva
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The origin of fluorine is a widely debated issue. Nevertheless, the ^{15}N({alpha},{gamma})^{19}F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the DC component and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV. Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is used to determine their widths in the {alpha} and {gamma} channels. We show that a direct measurement of the cross section of the ^{15}N({alpha},{gamma})^{19}F reaction can be successfully obtained with the Recoil Separator ERNA, and the widths {Gamma}_{gamma} and {Gamma}_{alpha} of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance {Gamma}_{alpha} . The revision of the widths of the two more relevant broad resonances in the 15N({alpha},{gamma})19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is dominated by the uncertainties affecting the Direct Capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.



rate research

Read More

73 - F. de Oliveira 1997
A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are discussed in detail, and we adopt the value Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition, the validity and the uncertainties of the usual approximations for mirror nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.
A current challenge for ab initio calculations is systems that contain large continuum contributions such as 8Be. We report on new measurements of radiative decay widths in this nucleus that test recent Greens function Monte Carlo calculations. Traditionally, {gamma} ray detectors have been utilized to measure the high energy photons from the 7Li(p, {gamma}){alpha}{alpha} reaction. However, due to the complicated response function of these detectors it has not yet been possible to extract the full {gamma} ray spectrum from this reaction. Here we present an alternative measurement using large area Silicon detectors to detect the two {alpha} particles, which provides a practically background free spectrum and retains good energy resolution. The resulting spectrum is analyzed using a many-level multi channel R-matrix parametrization. Improved values for the radiative widths are extracted from the R-matrix fit. We find evidence for significant non-resonant continuum contributions and tentative evidence for a broad 0+ resonance at 12 MeV.
The $^{18}{rm O}(p,alpha)^{15}{rm N}$ reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside AGB stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the $^{18}{rm O}(p,alpha)^{15}{rm N}$ reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances have been deduced and the change in the reaction rate evaluated.
We have devised a technique for measuring some of the most important nuclear reactions in stars which we expect to provide considerable improvement over previous experiments. Adapting ideas from dark matter search experiments with bubble chambers, we have found that a superheated liquid is sensitive to recoils produced from gamma-rays photodisintegrating the nuclei of the liquid. The main advantage of the new target-detector system is a gain in yield of six orders of magnitude over conventional gas targets due to the higher mass density of liquids. Also, the detector is practically insensitive to the gamma-ray beam itself, thus allowing it to detect only the products of the nuclear reaction of interest. The first set of tests of a superheated target with a narrow bandwidth gamma-ray beam was completed and the results demonstrate the feasibility of the scheme. The new data are successfully described by an R-matrix model using published resonance parameters. With the increase in luminosity of the next generation gamma-ray beam facilities, the measurement of thermonuclear rates in the stellar Gamow window would become possible.
Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا