Do you want to publish a course? Click here

X-Shooter study of accretion in Chamaeleon I: II. A steeper increase of accretion with stellar mass for very low mass stars?

227   0   0.0 ( 0 )
 Added by Carlo Felice Manara
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Shooter spectrograph. The sample is nearly complete down to M~0.1Msun for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broad-band flux-calibrated medium resolution spectrum. The correlation between the accretion luminosity to the stellar luminosity, and of the mass accretion rate to the stellar mass in the logarithmic plane yields slopes of 1.9 and 2.3, respectively. These slopes and the accretion rates are consistent with previous results in various star forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity smaller than ~0.45 Lsun and for stellar masses smaller than ~ 0.3 Msun, is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane empty of objects. One at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second one is just above the observational limits imposed by chromospheric emission. This empty region is located at M~0.3-0.4Msun, typical masses where photoevaporation is known to be effective, and at mass accretion rates ~10^-10 Msun/yr, a value compatible with the one expected for photoevaporation to rapidly dissipate the inner disk.



rate research

Read More

131 - C. F. Manara 2015
We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to 700 nm. The dependence of accretion with stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are robust to sample selection.
156 - C.F. Manara , L. Testi (2 , 3 2015
We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.
We present high-quality, medium resolution X-shooter/VLT spectra in the range 300-2500 nm for a sample of 12 very low-mass stars in the sigma Orionis cluster. The sample includes stars with masses ranging from 0.08 to 0.3 M$_odot$. The aim of this first paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass, young stars. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10$^{-9}$ M$_{odot}$ yr$^{-1}$ down to 5$times10^{-11}$ M$_{odot}$ yr$^{-1}$, allowing us to investigate the behavior of the accretion-driven emission lines in very-low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines, from the UV to the near-IR, obtained simultaneously. Most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We confirm the validity of the correlations between accretion luminosities and line luminosities given in the literature, with the possible exception of Halpha. When looking at individual objects, we find that the Hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of accretion luminosities, often in better agreement than the uncertainties introduced by the adopted correlations. The average accretion luminosity derived from several Hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of non-simultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.
Determining the mechanisms that drive the evolution of protoplanetary disks is a necessary step to understand how planets form. Here we measured the mass accretion rate for young stellar objects at age >5 Myr, a critical test for the current models of disk evolution. We present the analysis of the spectra of 36 targets in the ~5-10 Myr old Upper Scorpius region for which disk masses were measured with ALMA. We find that the mass accretion rates in this sample of old but still survived disks are similarly high as those of the younger (<3 Myr old) star-forming regions of Lupus and Cha I, when considering the dependence on stellar and disk mass. In particular, several disks show high mass accretion rates >10^-9 Msun/yr while having low disk masses. Furthermore, the median values of the measured mass accretion rates in the disk mass ranges where our sample is complete at a level ~60-80% are compatible in these three regions. At the same time, the spread of mass accretion rates at any given disk mass is still >0.9 dex even at age>5 Myr. These results are in contrast with simple models of viscous evolution, which would predict that the values of the mass accretion rate diminish with time, and a tighter correlation with disk mass at age>5 Myr. Similarly, simple models of internal photoevaporation cannot reproduce the observed mass accretion rates, while external photoevaporation might explain the low disk masses and high accretion rates. A partial possible solution to the discrepancy with the viscous models is that the gas-to-dust ratio of the disks at >5 Myr is significantly different and higher than the canonical 100, as suggested by some dust and gas disk evolution models. The results shown here require the presence of several inter-playing processes, such as detailed dust evolution, external photoevaporation and possibly MHD winds, to explain the secular evolution of protoplanetary disks.
Very low-mass Class I protostars have been investigated very little thus far. Variability of these young stellar objects (YSOs) and whether or not they are capable of strong episodic accretion is also left relatively unstudied. We investigate accretion variability in IRS54, a Class I very low-mass protostar with a mass of M$_{star}$ ~ 0.1 - 0.2 M$_{odot}$. We obtained spectroscopic and photometric data with VLT/ISAAC and VLT/SINFONI in the near-infrared ($J$, $H$, and $K$ bands) across four epochs (2005, 2010, 2013, and 2014). We used accretion-tracing lines (Pa$beta$ and Br$gamma$) and outflow-tracing lines (H$_2$ and [FeII] to examine physical properties and kinematics of the object. A large increase in luminosity was found between the 2005 and 2013 epochs of more than 1 magnitude in the $K$ band, followed in 2014 by a steep decrease. Consistently, the mass accretion rate ($dot{M}_{acc}$) rose by an order of magnitude from ~ 10$^{-8}$ M$_{odot}$ yr$^{-1}$ to ~ $10^{-7}$ M$_{odot}$ yr$^{-1}$ between the two early epochs. The visual extinction ($A_V$) has also increased from ~ 15 mag in 2005 to ~ 24 mag in 2013. This rise in $A_V$ in tandem with the increase in $dot{M}_{acc}$ is explained by the lifting up of a large amount of dust from the disc of IRS54, following the augmented accretion and ejection activity in the YSO, which intersects our line of sight due to the almost edge-on geometry of the disc. Because of the strength and timescales involved in this dramatic increase, this event is believed to have been an accretion burst possibly similar to bursts of EXor-type objects. IRS54 is the lowest mass Class I source observed to have an accretion burst of this type, and therefore potentially one of the lowest mass EXor-type objects known so far.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا